Markov- prosessien jatkokurssi Markov Processes

December 8, 2021

Contents

1 Introduction 2
2 Definition of a Markov process 3
3 Transition functions 7
4 Existence of Markov processes 9
5 A reminder on stopping and optional times 13
6 Strong Markov processes 16
6.1 Strong Markov property 16
6.2 Lévy processes are strong Markov processes 18
7 The semi-group and infinitesimal generator approach 21
7.1 Contraction semi-groups 21
7.2 Infinitesimal generator 23
7.3 Martingales and Dynkin's formula 28
8 Weak solutions of SDEs and martingale problems 31
9 Feller processes 38
9.1 Feller semi-groups, Feller transition functions and Feller pro- cesses 38
9.2 Càdlàg modifications of Feller processes 44
A Appendix 51

1 Introduction

Why should one study Markov processes? The class of Markov processes contains the

- Brownian motion,
- Lévy process,
- Feller processes,
where these classes are contained in each other, the class of Brownian motions is the smallest class. Moreover,
- solutions to certain SDEs are Markov processes.

Looking from another perspective we will see useful relations between Markov processes and

- martingale problems,
- diffusions,
- second order differential and integral operators.

The Markov processes are named after the Russian mathematician Andrey Andreyevich Markov (14 June 1856 - 20 July 1922).

2 Definition of a Markov process

For the following we let
(1) $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space,
(2) (E, \mathcal{E}) be a measurable space,
(3) $\mathbf{T} \subseteq \mathbb{R} \cup\{\infty\} \cup\{-\infty\}$ with $T \neq \emptyset$.

Let us fix some notation:

- We call $X=\left\{X_{t} ; t \in \mathbf{T}\right\}$ a stochastic process if

$$
X_{t}:(\Omega, \mathcal{F}) \rightarrow(E, \mathcal{E}) \quad \text { for all } \quad t \in \mathbf{T}
$$

- The map $t \mapsto X_{t}(\omega)$ is called a path of X.
- We say that $\mathbb{F}=\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ is a filtration if $\mathcal{F}_{t} \subseteq \mathcal{F}$ is a sub- σ-algebra for any $t \in \mathbf{T}$ and it holds $\mathcal{F}_{s} \subseteq \mathcal{F}_{t}$ for $s \leq t$.
- The process X is adapted to \mathbb{F} if X_{t} is \mathcal{F}_{t} measurable for all $t \in \mathbf{T}$.
- The natural filtration $\mathbb{F}^{X}=\left\{\mathcal{F}_{t}^{X} ; t \in \mathbf{T}\right\}$ of $X=\left\{X_{t} ; t \in \mathbf{T}\right\}$ is given by $\mathcal{F}_{t}^{X}:=\sigma\left(X_{s} ; s \leq t, s \in \mathbf{T}\right)$.

Obviously, X is always adapted to its natural filtration $\mathbb{F}^{X}=\left\{\mathcal{F}_{t}^{X} ; t \in \mathbf{T}\right\}$. Now we turn to our main definition:

Definition 2.1 (Markov process). The stochastic process X is called a Markov process w.r.t. \mathbb{F} if and only if
(1) X is adapted to \mathbb{F},
(2) for all $t \in \mathbf{T}, A \in \mathcal{F}_{t}$, and $B \in \sigma\left(X_{s} ; s \geq t\right)$ one has

$$
\mathbb{P}\left(A \cap B \mid X_{t}\right)=\mathbb{P}\left(A \mid X_{t}\right) \mathbb{P}\left(B \mid X_{t}\right) \text { a.s. }
$$

i.e. the σ-algebras \mathcal{F}_{t} and $\sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)$ are conditionally independent given X_{t}.

Remark 2.2.

(1) We recall that we define the conditional probability using conditional expectation as

$$
\mathbb{P}\left(C \mid X_{t}\right):=\mathbb{P}\left(C \mid \sigma\left(X_{t}\right)\right)=\mathbb{E}\left[\mathbb{1}_{C} \mid \sigma\left(X_{t}\right)\right]
$$

(2) If X is a Markov process w.r.t. \mathbb{F}, then X is a Markov process w.r.t. \mathbb{F}^{X}.
(3) If X is a Markov process w.r.t. its natural filtration \mathbb{F}^{X}, then the Markov property is preserved if one reverses the order in \mathbf{T}.

The following result is our first main result:
Theorem 2.3. Let X be \mathbb{F}-adapted. Then the following conditions are equivalent:
(1) X is a Markov process w.r.t. \mathbb{F}.
(2) For each $t \in \mathbf{T}$ and each bounded $\sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)$-measurable Y : $\Omega \rightarrow \mathbb{R}$ one has

$$
\begin{equation*}
\mathbb{E}\left[Y \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[Y \mid X_{t}\right] \text { a.s. } \tag{2.1}
\end{equation*}
$$

(3) If $s, t \in \mathbf{T}$ and $t \leq s$, then

$$
\mathbb{E}\left[f\left(X_{s}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[f\left(X_{s}\right) \mid X_{t}\right] \text { a.s. }
$$

for all bounded $f:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
Proof. (1) $\Longrightarrow(2)$ We can decompose $Y=Y^{+}-Y^{-}$into the positive and negative part, and each part can be approximated from below point-wise by $\sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)$-measurable simple functions. Therefore it suffices to show (2.1) for $Y=\mathbb{1}_{B}$ where $B \in \sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)$. In fact, for $A \in \mathcal{F}_{t}$ we have, a.s.,

$$
\begin{aligned}
\mathbb{E}\left(\mathbb{E}\left[Y \mid \mathcal{F}_{t}\right] \mathbb{1}_{A}\right) & =\mathbb{E} \mathbb{1}_{A} \mathbb{1}_{B} \\
& =\mathbb{P}(A \cap B) \\
& =\mathbb{E P}\left(A \cap B \mid X_{t}\right) \\
& =\mathbb{E P}\left(A \mid X_{t}\right) \mathbb{P}\left(B \mid X_{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{E} \mathbb{E}\left[\mathbb{1}_{A} \mid X_{t}\right] \mathbb{P}\left(B \mid X_{t}\right) \\
& =\mathbb{E}_{A} \mathbb{P}\left(B \mid X_{t}\right) \\
& =\mathbb{E}\left(\mathbb{E}\left[Y \mid X_{t}\right] \mathbb{1}_{A}\right)
\end{aligned}
$$

which implies (2).
(2) \Longrightarrow (1) If $A \in \mathcal{F}_{t}$ and $B \in \sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)$, then, a.s.,

$$
\begin{aligned}
\mathbb{P}\left(A \cap B \mid X_{t}\right) & =\mathbb{E}\left[\mathbb{1}_{A \cap B} \mid X_{t}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{A \cap B} \mid \mathcal{F}_{t}\right] \mid X_{t}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A} \mathbb{E}\left[\mathbb{1}_{B} \mid \mathcal{F}_{t}\right] \mid X_{t}\right] \\
& =\mathbb{E}\left[\mathbb{1}_{A} \mid X_{t}\right] \mathbb{E}\left[\mathbb{1}_{B} \mid X_{t}\right]
\end{aligned}
$$

which implies (1).
$(2) \Longrightarrow(3)$ is trivial. $(3) \Longrightarrow(2)$ To apply the Monotone Class Theorem for functions we let

$$
\mathcal{H}:=\left\{Y ; \quad Y \text { is bounded and } \sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)-\right.\text { measurable }
$$ such that (2.1) holds $\}$.

Then \mathcal{H}

- is a vector space,
- contains the constants,
- is closed under bounded and monotone limits.
(a) For bounded $f_{i}:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $t \leq s_{1}<\ldots<s_{n}, n \geq 1$, we show that

$$
\begin{equation*}
Y=\Pi_{i=1}^{n} f_{i}\left(X_{s_{i}}\right) \in \mathcal{H} \tag{2.2}
\end{equation*}
$$

We show (2.2) by induction over n. The case $\underline{n=1}$ is assertion (3).
$\underline{n>1}$: Assume that the statement is true for $n-1$. Then we get, a.s.,

$$
\begin{aligned}
\mathbb{E}\left[Y \mid \mathcal{F}_{t}\right] & =\mathbb{E}\left[\mathbb{E}\left[Y \mid \mathcal{F}_{s_{n-1}}\right] \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) \mathbb{E}\left[f_{n}\left(X_{s_{n}}\right) \mid \mathcal{F}_{s_{n-1}}\right] \mid \mathcal{F}_{t}\right] \\
& =\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) \mathbb{E}\left[f_{n}\left(X_{s_{n}}\right) \mid X_{s_{n-1}}\right] \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

By the Factorization Lemma A. 1 there exists a $h:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathbb{E}\left[f_{n}\left(X_{s_{n}}\right) \mid X_{s_{n-1}}\right]=h\left(X_{s_{n-1}}\right)$ a.s. By the induction hypothesis we get, a.s.,

$$
\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) h\left(X_{s_{n-1}}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) h\left(X_{s_{n-1}}\right) \mid X_{t}\right] .
$$

And finally, by the tower property, since $\sigma\left(X_{t}\right) \subseteq \mathcal{F}_{s_{n-1}}$, a.s.,

$$
\begin{aligned}
\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) h\left(X_{s_{n-1}}\right) \mid X_{t}\right] & =\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) \mathbb{E}\left[f_{n}\left(X_{s_{n}}\right) \mid \mathcal{F}_{s_{n-1}}\right] \mid X_{t}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\Pi_{i=1}^{n-1} f_{i}\left(X_{s_{i}}\right) f_{n}\left(X_{s_{n}}\right) \mid \mathcal{F}_{s_{n-1}}\right] \mid X_{t}\right] \\
& =\mathbb{E}\left[\Pi_{i=1}^{n} f_{i}\left(X_{s_{i}}\right) \mid X_{t}\right] .
\end{aligned}
$$

(b) Now we apply the Monotone Class Theorem A.2. From step (a) we know that $\mathbb{1}_{A} \in \mathcal{H}$ for any $A \in \mathcal{A}$ with
$\mathcal{A}=\left\{\left\{\omega \in \Omega ; X_{s_{1}}(\omega) \in I_{1}, \ldots, X_{s_{n}}(\omega) \in I_{n}\right\}: I_{k} \in \mathcal{B}(\mathbb{R}), s_{k} \in \mathbf{T}, s_{k} \geq t, n \geq 1\right\}$
where $\sigma(\mathcal{A})=\sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)$. Therefore
$\left\{Y ; Y\right.$ is bounded and $\sigma\left(X_{s} ; s \geq t, s \in \mathbf{T}\right)-$ measurable $\} \subseteq \mathcal{H}$.

3 Transition functions

In this section we assume that $\mathbf{T}=[0, \infty)$.
Definition 3.1 (MARKOV transition function).
(1) A family $\left(P_{t, s}\right)_{0 \leq t \leq s<\infty}$ is called Markov transition function on (E, \mathcal{E}) if all $P_{s, t}: E \times \mathcal{E} \rightarrow[0,1]$ satisfy that
(a) $A \mapsto P_{t, s}(x, A)$ is a probability measure on (E, \mathcal{E}) for each (t, s, x),
(b) $x \mapsto P_{t, s}(x, A)$ is \mathcal{E}-measurable for each (t, s, A),
(c) $P_{t, t}(x, A)=\delta_{x}(A)$,
(d) if $0 \leq t<s<u$, then the Chapman-Kolmogorov equation

$$
P_{t, u}(x, A)=\int_{E} P_{s, u}(y, A) P_{t, s}(x, d y)
$$

holds for all $x \in E$ and $A \in \mathcal{E}$.
(2) The Markov transition function $\left(P_{t, s}\right)_{s \leq t}$ is homogeneous if and only if $P_{t, s}=P_{0, s-t}$ for all $0 \leq t \leq s<\infty$.
(3) We say that a Markov process X w.r.t. \mathbb{F} is associated to the Markov transition function $\left(P_{t, s}\right)_{0 \leq t \leq s<\infty}$ provided that

$$
\begin{equation*}
\mathbb{E}\left[f\left(X_{s}\right) \mid \mathcal{F}_{t}\right]=\int_{E} f(y) P_{t, s}\left(X_{t}, d y\right) \text { a.s. } \tag{3.1}
\end{equation*}
$$

for all $0 \leq t \leq s<\infty$ and all bounded $f:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
(4) Let μ be a probability measure on (E, \mathcal{E}) such that $\mu(A)=\mathbb{P}\left(X_{0} \in A\right)$. Then μ is called initial distribution of X.

Remark 3.2.

(1) There exist Markov processes which do not possess transition functions (see [2, Remark 1.11, page 446]).
(2) Using monotone convergence one can check that the map

$$
x \mapsto \int_{E} f(y) P_{t, s}(x, d y)
$$

is $(\mathcal{E}, \mathcal{B}(\mathbb{R}))$-measurable for a bounded $f:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Proposition 3.3. A Markov process w.r.t. \mathbb{F} having $\left(P_{t, s}\right)_{t \leq s}$ as transition function satisfies for $0 \leq t_{1}<t_{2}<\ldots<t_{n}$ and bounded $f:\left(E^{n}, \mathcal{E}^{\otimes n}\right) \rightarrow$ $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ the relation

$$
\begin{aligned}
& \mathbb{E} f\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)= \\
& \qquad \int_{E} \mu\left(d x_{0}\right) \int_{E} P_{0, t_{1}}\left(x_{0}, d x_{1}\right) \ldots \int_{E} P_{t_{n-1}, t_{n}}\left(x_{n-1}, d x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

4 Existence of Markov processes

Given a distribution μ and Markov transition functions $\left\{P_{t, s}(x, A)\right\}$, does there always exist a Markov process with initial distribution μ and transition function $\left\{P_{t, s}(x, A)\right\}$?

Definition 4.1.

(1) For a measurable space (E, \mathcal{E}) and a non-empty index set \mathbf{T} we let

$$
\Omega:=E^{\mathbf{T}}, \quad \mathcal{F}:=\mathcal{E}^{\mathbf{T}}:=\sigma\left(X_{t} ; t \in \mathbf{T}\right)
$$

where $X_{t}: \Omega \rightarrow E$ is the coordinate map

$$
X_{t}(\omega)=\omega(t) \quad \text { where } \quad \omega=(\omega(t))_{t \in \mathbf{T}} \in \Omega
$$

(2) Let $\operatorname{Fin}(\mathbf{T}):=\{\mathrm{J} \subseteq \mathbf{T} ; 0<|\mathrm{J}|<\infty\}$ where in J all elements are pairwise distinct.
(3) For $J=\left\{t_{1}, \ldots, t_{n}\right\} \in \operatorname{Fin}(\mathbf{T})$ we define the projections $\pi_{J}: \Omega \rightarrow E^{J}$ by

$$
\pi_{J}(\omega):=\left(\omega\left(t_{1}\right), \ldots, \omega\left(t_{n}\right)\right)=\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) \in E^{J}
$$

(4) A set $\left\{\mathbf{P}_{J}: \mathbf{P}_{J}\right.$ is a probability measure on $\left.\left(E^{J}, \mathcal{E}^{J}\right), J \in \operatorname{Fin}(\mathbf{T})\right\}$ is called a set of finite-dimensional distributions.
(5) A set of of finite-dimensional distributions $\left\{\mathbf{P}_{J}: J \in \operatorname{Fin}(\mathbf{T})\right\}$ is called Kolmogorov consistent (or compatible or projective) provided that the following holds.
(a) Symmetry: One has

$$
\mathbf{P}_{t_{\sigma(1)}, \ldots, t_{\sigma(n)}}\left(A_{\sigma(1)} \times \ldots \times A_{\sigma(n)}\right)=\mathbf{P}_{t_{1}, \ldots, t_{n}}\left(A_{1} \times \ldots \times A_{n}\right)
$$

for any permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$.
(b) Projection property: One has

$$
\mathbf{P}_{J}=\mathbf{P}_{K} \circ\left(\left.\pi_{J}\right|_{E^{K}}\right)^{-1}
$$

for all $J \subseteq K$ with $J, K \in \operatorname{Fin}(\mathbf{T})$.

Theorem 4.2 (Kolmogorov's extension theorem, Daniell-Kolmogorov Theorem). Let E be a complete, separable metric space and $\mathcal{E}=\mathcal{B}(E)$. Let \mathbf{T} be a non-empty set. Suppose that for each $J \in \operatorname{Fin}(\mathbf{T})$ there exists a probability measure P_{J} on $\left(E^{J}, \mathcal{E}^{J}\right)$ and that

$$
\left\{\mathbf{P}_{J} ; J \in \operatorname{Fin}(\mathbf{T})\right\}
$$

is Kolmogorov consistent. Then there exists a unique probability measure \mathbb{P} on $\left(E^{\mathbf{T}}, \mathcal{E}^{\mathbf{T}}\right)$ such that

$$
\mathbf{P}_{J}=\mathbb{P} \circ \pi_{J}^{-1} \quad \text { on } \quad\left(E^{J}, \mathcal{E}^{J}\right)
$$

For the proof see, for example [5, Theorem 2.2 in Chapter 2]. The main result of this section is the following existence theorem that will be deduced from Theorem 4.2.

Theorem 4.3 (Existence of Markov processes). Let $E=\mathbb{R}^{d}, \mathcal{E}=\mathcal{B}\left(\mathbb{R}^{d}\right)$, and $\mathbf{T} \subseteq[0, \infty)$. Assume that μ is a probability measure on (E, \mathcal{E}) and that

$$
\left\{P_{t, s}(x, A) ; 0 \leq t \leq s<\infty, x \in E, A \in \mathcal{E}\right\}
$$

is a Markov transition function (Definition 3.1). If $J=\left\{t_{1}, \ldots, t_{n}\right\} \subseteq \mathbf{T}$ and $\left\{s_{1}, \ldots, s_{n}\right\}=\left\{t_{1}, \ldots, t_{n}\right\}$ with $s_{1}<\ldots<s_{n}$, i.e. the t_{k} 's are re-arranged according to their size, we define

$$
\begin{align*}
\mathbf{P}_{J}\left(A_{1} \times \ldots \times A_{n}\right):= & \int_{E} \ldots \int_{E} \mathbb{1}_{A_{1} \times \ldots \times A_{n}}\left(x_{1}, . ., x_{n}\right) \mu\left(d x_{0}\right) P_{0, s_{1}}\left(x_{0}, d x_{1}\right) \\
& \ldots P_{s_{n-1}, s_{n}}\left(x_{n-1}, d x_{n}\right) . \tag{4.1}
\end{align*}
$$

Then there exists a probability measure \mathbb{P} on $\left(E^{\mathbf{T}}, \mathcal{E}^{\mathbf{T}}\right)$ such that the coordinate mappings, i.e.

$$
X_{t}: E^{\mathbf{T}} \rightarrow \mathbb{R}^{d}: \omega \mapsto \omega(t)
$$

form a Markov process w.r.t. \mathbb{F}^{X} with the MARKOV transition function $\left(P_{t, s}\right)_{0 \leq t \leq s<\infty}$.

Remark 4.4. Using the monotone convergence one can show that (4.1) implies that for any bounded $f:\left(E^{n}, \mathcal{E}^{n}\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ it holds

$$
\begin{align*}
\mathbb{E} f\left(X_{s_{1}}, \ldots, X_{s_{n}}\right)= & \int_{E} \ldots \int_{E} f\left(x_{1}, . ., x_{n}\right) \mu\left(d x_{0}\right) P_{0, s_{1}}\left(x_{0}, d x_{1}\right) \\
& \ldots P_{s_{n-1}, s_{n}}\left(x_{n-1}, d x_{n}\right) . \tag{4.2}
\end{align*}
$$

Proof of Theorem 4.3. (a) By construction, \mathbf{P}_{J} is a probability measure on $\left(E^{J}, \mathcal{E}^{J}\right)$. We show that the set $\left\{\mathbf{P}_{J} ; J \in \operatorname{Fin}(\mathbf{T})\right\}$ is Kolmogorov consistent. The symmetry follows by construction, we only need to verify the projection property. Consider $K \subseteq J$ with

$$
K=\left\{s_{i_{1}}<\cdots<s_{i_{k}}\right\} \subseteq J=\left\{s_{1}<\ldots<s_{n}\right\}
$$

and $1 \leq k<n$, and

$$
\mathbf{P}_{J, K}: E^{J} \rightarrow E^{K}:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{i_{1}}, \ldots x_{i_{k}}\right) .
$$

We have $\mathbf{P}_{J, K}^{-1}\left(B_{1} \times \ldots \times B_{k}\right)=A_{1} \times \ldots \times A_{n}$ with $A_{i} \in\left\{B_{1}, \ldots, B_{k}, E\right\}$. Let us assume, for example, that $k=n-1$ and

$$
A_{1} \times \ldots \times A_{n}=B_{1} \times \ldots \times B_{n-2} \times E \times B_{n}
$$

Then

$$
\begin{aligned}
& \mathbf{P}_{J}\left(A_{1} \times \ldots \times A_{n}\right) \\
& =\int_{E} \ldots \int_{E} \mathbb{1}_{B_{1} \times \ldots \times B_{n-2} \times E \times B_{n}}\left(x_{1}, \ldots, x_{n}\right) \\
& \mu\left(d x_{0}\right) P_{0, s_{1}}\left(x_{0}, d x_{1}\right) \ldots P_{s_{n-1}, s_{n}}\left(x_{n-1}, d x_{n}\right) \\
& =\mathbf{P}_{\left\{s_{1}, \ldots, s_{n-2}, s_{n}\right\}}\left(B_{1} \times \ldots \times B_{n-2} \times B_{n}\right)
\end{aligned}
$$

since, by the Chapman-Kolmogorov equation, we have

$$
\int_{E} P_{s_{n-2}, s_{n-1}}\left(x_{n-2}, d x_{n-1}\right) P_{s_{n-1}, s_{n}}\left(x_{n-1}, d x_{n}\right)=P_{s_{n-2}, s_{n}}\left(x_{n-2}, d x_{n}\right) .
$$

(b) Now we check that the process is a Markov process. According to Definition 2.1 we need to show that

$$
\begin{equation*}
\mathbb{P}\left(A \cap B \mid X_{t}\right)=\mathbb{P}\left(A \mid X_{t}\right) \mathbb{P}\left(B \mid X_{t}\right) \text { a.s. } \tag{4.3}
\end{equation*}
$$

for $A \in \mathcal{F}_{t}^{X}=\sigma\left(X_{u} ; u \leq t\right)$ and $B \in \sigma\left(X_{s} ; s \geq t\right)$. We only prove the special case

$$
\mathbb{P}\left(X_{u} \in B_{1}, X_{s} \in B_{3}, \mid X_{t}\right)=\mathbb{P}\left(X_{u} \in B_{1} \mid X_{t}\right) \mathbb{P}\left(X_{s} \in B_{3} \mid X_{t}\right) \text { a.s. }
$$

for $u<t<s$ and $B_{i} \in \mathcal{E}$. For this we show that it holds

$$
\mathbb{E}\left[\mathbb{1}_{B_{1}}\left(X_{u}\right) \mathbb{1}_{B_{3}}\left(X_{s}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right)\right]=\mathbb{E}\left[\mathbb{P}\left(X_{u} \in B_{1} \mid X_{t}\right) \mathbb{P}\left(X_{s} \in B_{3} \mid X_{t}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right)\right]
$$

Indeed, by (4.1),

$$
\begin{aligned}
\mathbb{E}_{B_{1}}\left(X_{u}\right) \mathbb{1}_{B_{3}}\left(X_{s}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right) & =\int_{E} \int_{E} \int_{E} \int_{E} \mathbb{1}_{B_{1} \times B_{2} \times B_{3}}\left(x_{1}, x_{2}, x_{3}\right) \\
& \mu\left(d x_{0}\right) P_{0, u}\left(x_{0}, d x_{1}\right) P_{u, t}\left(x_{1}, d x_{2}\right) P_{t, s}\left(x_{2}, d x_{3}\right) .
\end{aligned}
$$

Using the tower property we get

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{P}\left(X_{s} \in B_{3} \mid X_{t}\right) \mathbb{P}\left(X_{u} \in B_{1} \mid X_{t}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right)\right] \\
& =\mathbb{E}\left[\left(\mathbb{E}\left[\mathbb{1}_{B_{3}}\left(X_{s}\right) \mid X_{t}\right]\right) \mathbb{1}_{B_{1}}\left(X_{u}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right)\right] \\
& =\mathbb{E}\left[P_{t, s}\left(X_{t}, B_{3}\right) \mathbb{1}_{B_{1}}\left(X_{u}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right)\right] .
\end{aligned}
$$

To see that $\left.\mathbb{E}\left[\mathbb{1}_{B_{3}}\left(X_{s}\right) \mid X_{t}\right]\right)=P_{t, s}\left(X_{t}, B_{3}\right)$ we write

$$
\begin{aligned}
\mathbb{E}_{B_{3}}\left(X_{s}\right) \mathbb{1}_{B}\left(X_{t}\right) & =\int_{E} \int_{E} \int_{E} \mathbb{1}_{B_{3}}\left(x_{2}\right) \mathbb{1}_{B}\left(x_{1}\right) \mu\left(d x_{0}\right) P_{0, t}\left(x_{0}, d x_{1}\right) P_{t, s}\left(x_{1}, d x_{2}\right) \\
& =\int_{E} \int_{E} \int_{E} \mathbb{1}_{B}\left(x_{1}\right) \mu\left(d x_{0}\right) P_{0, t}\left(x_{0}, d x_{1}\right) P_{t, s}\left(x_{1}, B_{3}\right) \\
& =\mathbb{E} P_{t, s}\left(X_{t}, B_{3}\right) \mathbb{1}_{B}\left(X_{t}\right) .
\end{aligned}
$$

where we used (4.2) for $f\left(x_{1}\right)=\mathbb{1}_{B}\left(x_{1}\right) P_{t, s}\left(x_{1}, B_{3}\right)$. Again by (4.2), now for $f\left(X_{u}, X_{t}\right):=P_{t, s}\left(X_{t}, B_{3}\right) \mathbb{1}_{B_{1}}\left(X_{u}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right)$, we get that

$$
\begin{aligned}
& \mathbb{E} P_{t, s}\left(X_{t}, B_{3}\right) \mathbb{1}_{B_{1}}\left(X_{u}\right) \mathbb{1}_{B_{2}}\left(X_{t}\right) \\
& =\int_{E} \int_{E} \int_{E} P_{t, s}\left(x_{2}, B_{3}\right) \mathbb{1}_{B_{1} \times B_{2}}\left(x_{1}, x_{2}\right) \mu\left(d x_{0}\right) P_{0, u}\left(x_{0}, d x_{1}\right) P_{u, t}\left(x_{1}, d x_{2}\right) \\
& =\int_{E} \int_{E} \int_{E} \int_{E} \mathbb{1}_{B_{1} \times B_{2} \times B_{3}}\left(x_{1}, x_{2}, x_{3}\right) \\
& \mu\left(d x_{0}\right) P_{0, u}\left(x_{0}, d x_{1}\right) P_{u, t}\left(x_{1}, d x_{2}\right) P_{t, s}\left(x_{2}, d x_{3}\right) .
\end{aligned}
$$

5 A reminder on stopping and optional times

For (Ω, \mathcal{F}) we assume a filtration $\mathbb{F}=\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ where $\mathbf{T}=[0, \infty) \cup\{\infty\}$ and $\mathcal{F}=\mathcal{F}_{\infty}=\sigma\left(\bigcup_{s \in[0, \infty)} \mathcal{F}_{s}\right)$. Moreover, we set

$$
\begin{array}{ll}
\mathcal{F}_{t+}:=\bigcap_{s>t} \mathcal{F}_{s}, \quad t \in[0, \infty), & \mathcal{F}_{\infty+}:=\mathcal{F}_{\infty}, \\
\mathcal{F}_{t-}:=\sigma\left(\bigcup_{0 \leq s<t} \mathcal{F}_{s}\right), \quad t \in(0, \infty], & \mathcal{F}_{0-}:=\mathcal{F}_{0}
\end{array}
$$

Therefore, for all $t \in \mathbf{T}$ one has that

$$
\mathcal{F}_{t-} \subseteq \mathcal{F}_{t} \subseteq \mathcal{F}_{t+}
$$

Definition 5.1.

(1) A map $\tau: \Omega \rightarrow \mathbf{T}$ is called a stopping time w.r.t. \mathbb{F} provided that

$$
\{\tau \leq t\} \in \mathcal{F}_{t} \quad \text { for all } \quad t \in[0, \infty)
$$

(2) The map $\tau: \Omega \rightarrow \mathbf{T}$ is called an optional time w.r.t \mathbb{F} provided that

$$
\{\tau<t\} \in \mathcal{F}_{t} \quad \text { for all } \quad t \in[0, \infty)
$$

(3) For a stopping time $\tau: \Omega \rightarrow \mathbf{T}$ w.r.t. \mathbb{F} we define

$$
\mathcal{F}_{\tau}:=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \quad \forall t \in[0, \infty)\right\} .
$$

(4) For an optional time $\tau: \Omega \rightarrow \mathbf{T}$ w.r.t. \mathbb{F} we define

$$
\mathcal{F}_{\tau+}:=\left\{A \in \mathcal{F}: A \cap\{\tau<t\} \in \mathcal{F}_{t} \quad \forall t \in[0, \infty)\right\}
$$

Remark 5.2.

(1) For a stopping time we have that $\{\tau=\infty\}=\{\tau<\infty\}^{c} \in \mathcal{F}_{\infty}$ because

$$
\{\tau<\infty\}=\bigcup_{n \in \mathbb{N}}\{\tau \leq n\} \in \mathcal{F}_{\infty}
$$

(2) For an optional time we have that $\{\tau<\infty\} \in \mathcal{F}_{\infty}$.
(3) \mathcal{F}_{τ} and $\mathcal{F}_{\tau+}$ are σ algebras.

Definition 5.3. The filtration $\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ is called right-continuous if $\mathcal{F}_{t}=$ \mathcal{F}_{t+} for all $t \in[0, \infty)$.

Lemma 5.4. If τ and σ are stopping times w.r.t. \mathbb{F}, then
(1) $\tau+\sigma$,
(2) $\tau \wedge \sigma=\min \{\tau, \sigma\}$,
(3) $\tau \vee \sigma=\max \{\tau, \sigma\}$,
are stopping times w.r.t. \mathbb{F}.

Lemma 5.5.

(1) For $t_{0} \in \mathbf{T}$ the map $\tau(\omega) \equiv t_{0}$ for all $\omega \in \Omega$ is a stopping time and one has $\mathcal{F}_{t_{0}}=\mathcal{F}_{\tau}$.
(2) Every stopping time is an optional time.
(3) If $\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ is right-continuous, then every optional time is a stopping time.
(4) The map τ is an $\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ optional time if and only if τ is an $\left\{\mathcal{F}_{t+} ; t \in\right.$ $\mathbf{T}\}$ stopping time.

Proof. (1) follows from

$$
\{\tau \leq t\}=\left\{\begin{array}{ll}
\Omega ; & t_{0} \leq t \\
\emptyset ; & t_{0}>t
\end{array} .\right.
$$

(2) Let τ be a stopping time. Then

$$
\{\tau<t\}=\bigcup_{n=1}^{\infty} \underbrace{\left\{\tau \leq t-\frac{1}{n}\right\}}_{\in \mathcal{F}_{t-\frac{1}{n}} \subseteq \mathcal{F}_{t}} \in \mathcal{F}_{t} .
$$

(3) We have that $\{\tau \leq t\}=\bigcap_{n=1}^{\infty} \underbrace{\left\{\tau<t+\frac{1}{n}\right\}}_{\in \mathcal{F}_{t+\frac{1}{n}}}$. Because of

$$
\bigcap_{n=1}^{M}\left\{\tau<t+\frac{1}{n}\right\}=\left\{\tau<t+\frac{1}{M}\right\} \in \mathcal{F}_{t+\frac{1}{M}}
$$

we get that $\{\tau \leq t\} \in \mathcal{F}_{t+\frac{1}{M}} \quad \forall M \in \mathbb{N}^{*}$ and hence $\{\tau \leq t\} \in \mathcal{F}_{t+}=\mathcal{F}_{t}$ since $\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ is right-continuous.
(4) \Longrightarrow If τ is an $\left\{\mathcal{F}_{t} ; t \in \mathbf{T}\right\}$ optional time, then $\{\tau<t\} \in \mathcal{F}_{t}$ implies $\{\tau<t\} \in \mathcal{F}_{t+}$ because $\mathcal{F}_{t} \subseteq \bigcap_{s>t} \mathcal{F}_{s}=\mathcal{F}_{t+}$. This means that τ is an $\left\{\mathcal{F}_{t+} ; t \in \mathbf{T}\right\}$ optional time. Since $\left\{\mathcal{F}_{t+} ; t \in \mathbf{T}\right\}$ is right-continuous, we conclude from (3) that τ is an $\left\{\mathcal{F}_{t+} ; t \in \mathbf{T}\right\}$ stopping time.
\Longleftarrow If τ is an $\left\{\mathcal{F}_{t+} ; t \in \mathbf{T}\right\}$ stopping time, then

Lemma 5.6. For stopping times $\sigma, \tau, \tau_{1}, \tau_{2}, \ldots$ w.r.t. \mathbb{F} the following holds:
(1) τ is \mathcal{F}_{τ}-measurable.
(2) If $\tau \leq \sigma$, then $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma}$.
(3) $\mathcal{F}_{\tau+}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t+} \quad \forall t \in[0, \infty)\right\}$.
(4) The map $\sup _{n} \tau_{n}: \Omega \rightarrow \mathbf{T}$ is a stopping time w.r.t. \mathbb{F}.

6 Strong Markov processes

6.1 Strong Markov property

Definition 6.1 (progressively measurable). Let E be a complete, separable metric space and $\mathcal{E}=\mathcal{B}(E)$.
(1) A process $X=\left\{X_{t} ; t \in[0, \infty)\right\}$, with $X_{t}: \Omega \rightarrow E$ is called \mathbb{F}-progressively measurable if for all $t \geq 0$ it holds

$$
X:\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right) \rightarrow(E, \mathcal{E})
$$

(2) We will say that a stochastic process X is right-continuous (left-continuous), if for all $\omega \in \Omega$ the functions

$$
[0, \infty) \ni t \mapsto X_{t}(\omega) \in E
$$

are right-continuous (left-continuous).
We will start with a technical lemma:

Lemma 6.2.

(1) If X is \mathbb{F}-progressively measurable, then X is \mathbb{F}-adapted,
(2) If X is \mathbb{F}-adapted and right-continuous (or left-continuous), then X is \mathbb{F}-progressively measurable.
(3) If τ is an \mathbb{F}-stopping time and X is \mathbb{F} - progressively measurable, then $X_{\tau}:\{\tau<\infty\} \rightarrow E$ is $\left.\mathcal{F}_{\tau}\right|_{\{\tau<\infty\}}-$ measurable.
(4) For an \mathbb{F}-stopping time τ and a \mathbb{F} - progressively measurable process X the stopped process X^{τ} given by

$$
X_{t}^{\tau}(\omega):=X_{t \wedge \tau}(\omega)
$$

is \mathbb{F} - progressively measurable,
(5) If τ is an \mathbb{F}-optional time and X is \mathbb{F} - progressively measurable, then $X_{\tau}:\{\tau<\infty\} \rightarrow E$ is $\left.\mathcal{F}_{\tau+}\right|_{\{\tau<\infty\}}$-measurable.

Proof. The assertions (1), (2) and (5) are exercises.
(3) For $s \in[0, \infty)$ it holds

$$
\{\tau \wedge t \leq s\}=\{\tau \leq s\} \cup\{t \leq s\}=\left\{\begin{array}{ll}
\Omega, & s \geq t \\
\{\tau \leq s\}, & s<t
\end{array} \in \mathcal{F}_{t} .\right.
$$

Hence $\tau \wedge t$ is \mathcal{F}_{t}-measurable. Next we observe that $h(\omega):=(\tau(\omega) \wedge t, \omega)$ is measurable as map

$$
\left(\Omega, \mathcal{F}_{t}\right) \rightarrow\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right)
$$

Also, since X is \mathbb{F} - progressively measurable, we have that

$$
\begin{equation*}
X:\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right) \rightarrow(E, \mathcal{E}) \tag{6.1}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
X \circ h:\left(\Omega, \mathcal{F}_{t}\right) \rightarrow(E, \mathcal{E}) \tag{6.2}
\end{equation*}
$$

It holds that (3) is equivalent to

$$
\left\{X_{\tau} \in B\right\} \cap\{\tau \leq t\} \in \mathcal{F}_{t} \quad \text { for all } \quad t \in[0, \infty)
$$

Indeed this is true as

$$
\left\{X_{\tau} \in B\right\} \cap\{\tau \leq t\}=\left\{X_{\tau \wedge t} \in B\right\} \cap\{\tau \leq t\}
$$

which is in \mathcal{F}_{t} because of (6.2) and since τ is a stopping time.
(4) It holds that the map $H(s, \omega):=(\tau(\omega) \wedge s, \omega)$ is measurable as map

$$
\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right) \rightarrow\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right)
$$

for $t \geq 0$ since, for $r \in[0, t]$,

$$
\{(s, \omega) \in[0, t] \times \Omega: \tau(\omega) \wedge s \in[0, r]\}=([0, r] \times \Omega) \cup((r, t] \times\{\tau \leq r\})
$$

Because of (6.1) we have for the composition $(X \circ H)(s, \omega):=X_{\tau(\omega) \wedge s}(\omega)=$ $X_{s}^{\tau}(\omega)$ the measurability

$$
X \circ H:\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right) \rightarrow(E, \mathcal{E})
$$

Definition 6.3 (strong Markov process). Assume that $\left\{X_{t}: t \geq 0\right\}$ is an \mathbb{F}-progressively measurable Markov process with homogeneous transition function $\left(P_{t}\right)_{t \geq 0}$ in the sense that $P_{t}=P_{0, t}$. The process X is called a strong Markov process if

$$
\mathbb{P}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau+}\right)=P_{t}\left(X_{\tau}, A\right) \text { a.s. }
$$

for all $t \geq 0, A \in \mathcal{E}$ and all \mathbb{F}-optional times $\tau: \Omega \rightarrow[0, \infty)$.
One can formulate the strong Markov property without transition functions:
Proposition 6.4. Let X be an \mathbb{F}-progressively measurable process. Then, provided X is a Markov process with transition function, the following assertions are equivalent to Definition 6.3:
(1) For all For all $t \in \mathbf{T}$ and $A \in \mathcal{E}$ one has

$$
\mathbb{P}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau+}\right)=\mathbb{P}\left(X_{\tau+t} \in A \mid X_{\tau}\right) \text { a.s. }
$$

$$
\text { for all } \mathbb{F} \text {-optional times } \tau: \Omega \rightarrow[0, \infty) \text {. }
$$

(2) For all $t_{1}, \ldots, t_{n} \in \mathbf{T}$ and $A_{1}, \ldots, A_{n} \in \mathcal{E}$ one has

$$
\mathbb{P}\left(X_{\tau+t_{1}} \in A_{1}, \ldots, X_{\tau+t_{n}} \in A_{n} \mid \mathcal{F}_{\tau+}\right)=\mathbb{P}\left(X_{\tau+t_{1}} \in A_{1}, \ldots, X_{\tau+t_{n}} \in A_{n} \mid X_{\tau}\right) \text { a.s. }
$$

for all \mathbb{F}-optional times $\tau: \Omega \rightarrow[0, \infty)$.

6.2 Lévy processes are strong Markov processes

Definition 6.5. A process $X=\left\{X_{t}: t \geq 0\right\}$ is called Lévy process if the following holds:
(1) $X_{0} \equiv 0$.
(2) The paths of X are càdlàg (i.e. they are right-continuous and have left limits).
(3) For all $0 \leq s \leq t<\infty$ one has $X_{t}-X_{s} \stackrel{d}{=} X_{t-s}$.
(4) For all $0 \leq s \leq t<\infty$ one has that $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X}.

The strong Markov property of a LÉvy process will be obtained as follows:

Theorem 6.6. Let X be a Lévy process. Assume that $\tau: \Omega \rightarrow[0, \infty)$ is an \mathbb{F}^{X}-optional time. Define the process $\tilde{X}=\left\{\tilde{X}_{t} ; t \geq 0\right\}$ by

$$
\tilde{X}_{t}=\left(X_{t+\tau}-X_{\tau}\right), \quad t \geq 0
$$

Then the process \tilde{X} is independent of $\mathcal{F}_{\tau+}^{X}$ and \tilde{X} has the same distribution as X.

Proof. The finite dimensional distributions determine the law of a stochastic process. Hence it is sufficient to show for arbitrary $0=t_{0}<t_{1}<\ldots<t_{m}<$ ∞ that

$$
\tilde{X}_{t_{m}}-\tilde{X}_{t_{m-1}}, \ldots, \tilde{X}_{t_{1}}-\tilde{X}_{t_{0}} \quad \text { and } \quad \mathcal{F}_{\tau+} \quad \text { are independent. }
$$

Let $G \in \mathcal{F}_{\tau+}$. We define a sequence of random times

$$
\tau^{(n)}=\sum_{k=1}^{\infty} \frac{k}{2^{n}} \mathbb{1}_{\left\{\frac{k-1}{2^{n}} \leq \tau<\frac{k}{2^{n}}\right\}} .
$$

We have that $\tau^{(n)}<\infty$. Then for $\theta_{1}, \ldots, \theta_{m} \in \mathbb{R}$, using tower property,

$$
\begin{aligned}
& \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\tau^{(n)}+t_{l}}-X_{\tau^{(n)}+t_{l-1}}\right)\right\} \mathbb{1}_{G} \\
= & \sum_{k=1}^{\infty} \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\tau^{(n)}+t_{l}}-X_{\tau^{(n)}+t_{l-1}}\right)\right\} \mathbb{1}_{G \cap\left\{\tau^{(n)}=\frac{k}{2^{n}}\right\}} \\
= & \sum_{k=1}^{\infty} \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{2^{\frac{k}{n}}+t_{l}}-X_{\frac{k}{2^{n}}+t_{l-1}}\right)\right\} \mathbb{1}_{G \cap\left\{\tau^{(n)}=\frac{k}{2^{n}}\right\}} \\
= & \sum_{k=1}^{\infty} \mathbb{E} \mathbb{1}_{G \cap\left\{\tau^{(n)}=\frac{k}{\left.2^{n}\right\}}\right.} \mathbb{E}\left[\left.\exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\frac{k}{2^{n}}+t_{l}}-X_{\frac{k}{2^{n}}+t_{l-1}}\right)\right\} \right\rvert\, \mathcal{F}_{\frac{k}{2^{n}}}\right] \\
= & \sum_{k=1}^{\infty} \mathbb{E} \mathbb{1}_{G \cap\left\{\tau^{(n)}=\frac{k}{\left.2^{n}\right\}}\right.} \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\frac{k}{2^{n}}+t_{l}}-X_{\frac{k}{2^{n}}+t_{l-1}}\right)\right\} \\
= & \sum_{k=1}^{\infty} \mathbb{E} \mathbb{1}_{G \cap\left\{\tau^{(n)}=\frac{k}{\left.2^{n}\right\}}\right.} \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{t_{l}}-X_{t_{l-1}}\right)\right\} \\
= & \mathbb{P}(G) \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{t_{l}}-X_{t_{l-1}}\right)\right\}
\end{aligned}
$$

since $G \cap\left\{\tau^{(n)}=\frac{k}{2^{n}}\right\}=G \cap\left\{\frac{k-1}{2^{n}} \leq \tau<\frac{k}{2^{n}}\right\} \in \mathcal{F}_{\frac{k}{2^{n}}}$. Because we have $\tau^{(n)}(\omega) \downarrow \tau(\omega)$ and X is right-continuous, we get

$$
\lim _{n \rightarrow \infty} X_{\tau^{(n)}(\omega)+s}=X_{\tau(\omega)+s}
$$

for all $s \geq 0$ and

$$
\mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\tau+t_{l}}-X_{\tau+t_{l-1}}\right)\right\} \mathbb{1}_{G}=\mathbb{P}(G) \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{t_{l}}-X_{t_{l-1}}\right)\right\}
$$

by dominated convergence. Specialising to $\Omega=G$ yields to

$$
\mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\tau+t_{l}}-X_{\tau+t_{l-1}}\right)\right\}=\mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{t_{l}}-X_{t_{l-1}}\right)\right\}
$$

which implies that X and \tilde{X} have the same finite-dimensional distributions. In turn, this also gives
$\mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\tau+t_{l}}-X_{\tau+t_{l-1}}\right)\right\} \mathbb{1}_{G}=\mathbb{P}(G) \mathbb{E} \exp \left\{i \sum_{l=1}^{m} \theta_{l}\left(X_{\tau+t_{l}}-X_{\tau+t_{l-1}}\right)\right\}$.
which means that \tilde{X} is independent from $\mathcal{F}_{\tau+}^{X}$.
Theorem 6.7. A LÉvy process is a strong Markov process.
Proof. Assume that $\tau: \Omega \rightarrow[0, \infty)$ is an \mathbb{F}^{X}-optional time. Since by Lemma 6.2 we have that X_{τ} is $\mathcal{F}_{\tau+}^{X}$ measurable and from Theorem 6.6 we have that $X_{t+\tau}-X_{\tau}$ is independent from $\mathcal{F}_{\tau+}^{X}$, we get that for any $A \in \mathcal{E}$ it holds, a.s.,

$$
\begin{aligned}
\mathbb{P}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau+}\right) & =\mathbb{E}\left[\mathbb{1}_{\left.\left(X_{t+\tau}-X_{\tau}\right)+X_{\tau} \in A\right\}} \mid \mathcal{F}_{\tau+}\right] \\
& =\left.\left(\mathbb{E} \mathbb{1}_{\left.\left(X_{t+\tau}-X_{\tau}\right)+y \in A\right\}}\right)\right|_{y=X_{\tau}}
\end{aligned}
$$

The assertion from Theorem 6.6 that $X_{t+\tau}-X_{\tau} \stackrel{d}{=} X_{t}$ allows us to write

$$
\mathbb{E} \mathbb{1}_{\left\{\left(X_{t+\tau}-X_{\tau}\right)+y \in A\right\}}=\mathbb{E} \mathbb{1}_{\left\{X_{t}+y \in A\right\}}=P_{t}(y, A) .
$$

Consequently, we have shown that

$$
\mathbb{P}\left(X_{\tau+t} \in A \mid \mathcal{F}_{\tau+}\right)=P_{t}\left(X_{\tau}, A\right) \text { a.s. }
$$

7 The semi-group and infinitesimal generator approach

7.1 Contraction semi-groups

Definition 7.1 (semi-group).
(1) Let \mathcal{B} be a real Banach space with norm $\|\cdot\|$. A one-parameter family $\{T(t) ; t \geq 0\}$ of bounded linear operators $T(t): \mathcal{B} \rightarrow \mathcal{B}$ is called a semi-group if
(a) $T(0)=I d$,
(b) $T(s+t)=T(s) T(t)$ for all $s, t \geq 0$.
(2) A semi-group $\{T(t) ; t \geq 0\}$ is called strongly continuous (or C_{0} semigroup) if, for all $f \in \mathcal{B}$,

$$
\lim _{t \downarrow 0} T(t) f=f
$$

(3) The semi-group $\{T(t) ; t \geq 0\}$ is a contraction semi-group if, for all $t \geq 0$,

$$
\|T(t)\|=\sup _{\|f\|=1}\|T(t) f\| \leq 1
$$

Example 7.2. Let $\mathcal{B}:=\mathbb{R}^{d}$ and let A be a $d \times d$ matrix. For $t \geq 0$ define

$$
T(t):=e^{t A}:=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}
$$

with A^{0} being the identity matrix. As norm we take the operator norm of A, i.e.

$$
\|A\|:=\sup \{|A x|:|x| \leq 1\}
$$

where $\left|\left(x_{1}, \ldots, d\right)\right|:=\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{\frac{1}{2}}$. Then one has that
(1) $e^{(s+t) A}=e^{s A} e^{t A}$ for all $s, t \geq 0$,
(2) $\left\{e^{t A} ; t \geq 0\right\}$ is strongly continuous, and
(3) $\left\|e^{t A}\right\| \leq e^{t\|A\|}$ for $t \geq 0$.

Definition 7.3. Let E be a complete separable metric space and let $\mathcal{B}(E)$ be the Borel- σ-algebra generated by the open sets of E. By \mathcal{B}_{E} we denote the space of bounded measurable functions

$$
f:(E, \mathcal{B}(E)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

and equip this space with the norm $\|f\|:=\sup _{x \in E}|f(x)|$.
Theorem 7.4. Let E be a complete separable metric space and X be a homogeneous Markov process with transition function $\left\{P_{t}(x, A)\right\}$. Then the following is true:
(1) The space \mathcal{B}_{E} defined in Definition 7.3 is a Banach space.
(2) The family of operators $\{T(t) ; t \geq 0\}$ with

$$
T(t) f(x):=\int_{E} f(y) P_{t}(x, d y), \quad f \in \mathcal{B}_{E}
$$

is a contraction semi-group.
Proof. (1) We realise that \mathcal{B}_{E} is indeed a Banach space:

- Measurable and bounded functions form a vector space.
$-\|f\|:=\sup _{x \in E}|f(x)|$ is a norm.
$-\mathcal{B}_{E}$ is complete w.r.t. this norm.
(2) We show that $T(t): \mathcal{B}_{E} \rightarrow \mathcal{B}_{E}$: To verify that

$$
T(t) f:(E, \mathcal{B}(E)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

we can restrict ourself to $f \geq 0$ and find simple (measurable!) functions $f_{n}=\sum_{k=1}^{N_{n}} a_{k}^{n} \mathbb{1}_{A_{k}^{n}}, A_{k}^{n} \in \mathcal{B}(E), a_{k}^{n} \geq 0$ such that $f_{n} \uparrow f$. Then

$$
\begin{aligned}
T(t) f_{n}(x) & =\int_{E} \sum_{k=1}^{N_{n}} a_{k}^{n} \mathbb{1}_{A_{k}^{n}}(y) P_{t}(x, d y) \\
& =\sum_{k=1}^{N_{n}} a_{k}^{n} \int_{E} \mathbb{1}_{A_{k}^{n}}(y) P_{t}(x, d y)
\end{aligned}
$$

$$
=\sum_{k=1}^{N_{n}} a_{k}^{n} P_{t}\left(x, A_{k}^{n}\right)
$$

Since

$$
P_{t}\left(\cdot, A_{k}^{n}\right):(E, \mathcal{B}(E)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R})),
$$

we have this measurability for $T(t) f_{n}$, and by dominated convergence also for $T(t) f$. Moreover, we have

$$
\begin{align*}
\|T(t) f\| & =\sup _{x \in E}|T(t) f(x)| \\
& \leq \sup _{x \in E} \int_{E}|f(y)| P_{t}(x, d y) \\
& \leq \sup _{x \in E}\|f\| P_{t}(x, E)=\|f\| . \tag{7.1}
\end{align*}
$$

Hence $T(t) f \in \mathcal{B}_{E}$.
(c) $\{T(t) ; t \geq 0\}$ is a semi-group: We first observe that

$$
T(0) f(x)=\int_{E} f(y) P_{0}(x, d y)=\int_{E} f(y) \delta_{x}(d y)=f(x)
$$

which implies that $T(0)=I d$. From the Chapman-Kolmogorov equation we derive

$$
\begin{aligned}
T(s) T(t) f(x) & =T(s)(T(t) f)(x) \\
& =T(s)\left(\int_{E} f(y) P_{t}(\cdot, d y)\right)(x) \\
& =\int_{E} \int_{E} f(y) P_{t}(z, d y) P_{s}(x, d z) \\
& =\int_{E} f(y) P_{t+s}(x, d y)=T(t+s) f(x) .
\end{aligned}
$$

(d) We have already seen in (7.1) that $\{T(t) ; t \geq 0\}$ is a contraction.

7.2 Infinitesimal generator

Definition 7.5 (infinitesimal generator). Let $\{T(t) ; t \geq 0\}$ be a contraction semi-group on \mathcal{B}_{E}. Define $D(A)$ to be the set of all $f \in \mathcal{B}_{E}$ such that there
exists a $g \in \mathcal{B}_{E}$ such that

$$
\begin{equation*}
\lim _{t \downarrow 0}\left\|\frac{T(t) f-f}{t}-g\right\|=0 \tag{7.2}
\end{equation*}
$$

and

$$
A: D(A) \rightarrow \mathcal{B}_{E} \quad \text { by } \quad A f:=\lim _{t \downarrow 0} \frac{T(t) f-f}{t}
$$

The operator A is called infinitesimal generator of $\{T(t) ; t \geq 0\}$ and $D(A)$ the domain of A.

Example 7.6. If $W=\left(W_{t}\right)_{t \geq 0}$ is the one-dimensional Brownian motion and $C_{u}^{2}(\mathbb{R}):=\{f: \mathbb{R} \rightarrow \mathbb{R}:$ twice continuously differentiable and $f^{\prime \prime}$ is uniformly continuous and bounded $\}$, then $C_{u}^{2}(\mathbb{R}) \subseteq D(A)$ and for $f \in C_{u}^{2}(\mathbb{R})$ we have that $A f=\frac{1}{2} \frac{d^{2}}{d x^{2}} f$.

Proof. We have $P_{t}(x, A)=\mathbb{P}\left(x+W_{t} \in A\right)$ and

$$
T(t) f(x)=\mathbb{E} f\left(x+W_{t}\right)
$$

By ITÔ's formula,

$$
f\left(x+W_{t}\right)=f(x)+\int_{0}^{t} f^{\prime}\left(x+W_{s}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s
$$

Since f^{\prime} is bounded, we have $\mathbb{E} \int_{0}^{t}\left(f^{\prime}\left(x+W_{s}\right)\right)^{2} d s<\infty$ and therefore

$$
\mathbb{E} \int_{0}^{t} f^{\prime}\left(x+W_{s}\right) d W_{s}=0
$$

For $t>0$ this implies

$$
\begin{aligned}
\lim _{t \downarrow 0} \frac{\mathbb{E} f\left(x+W_{t}\right)-f(x)}{t} & =\frac{1}{2} \lim _{t \downarrow 0} \mathbb{E} \frac{1}{t} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s \\
& =\frac{1}{2} \mathbb{E} \lim _{t \downarrow 0} \frac{1}{t} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s
\end{aligned}
$$

$$
=\frac{1}{2} f^{\prime \prime}(x)
$$

where we use dominated convergence as

$$
\left|\frac{1}{t} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s\right| \leq \sup _{y}\left|f^{\prime \prime}(y)\right|<\infty
$$

and the continuity of the paths $s \mapsto W_{s}(\omega)$. It remains to estimate uniformly in x the expression

$$
\left|\frac{1}{2} \frac{1}{t} \mathbb{E} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s-\frac{1}{2} f^{\prime \prime}(x)\right| .
$$

Given $\varepsilon>0$ we find an $\eta>0$ such that $|x-y|<\eta$ implies that $\mid f^{\prime \prime}(x)-$ $f^{\prime \prime}(y) \mid<\varepsilon$. Then

$$
\begin{aligned}
& \left|\frac{1}{t} \mathbb{E} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s-f^{\prime \prime}(x)\right| \\
& \leq\left|\mathbb{E} 1_{\left\{\sup _{s \in[0, t]}\left|W_{s}\right|<\eta\right\}}\left[\frac{1}{t} \int_{0}^{t} f^{\prime \prime}\left(x+W_{s}\right) d s-f^{\prime \prime}(x)\right]\right| \\
& +2 \mathbb{P}\left(\sup _{s \in[0, t]}\left|W_{s}\right| \geq \eta\right) \sup _{x}\left|f^{\prime \prime}(x)\right| \\
& \leq \varepsilon+\frac{2}{\eta^{2}} \mathbb{E} \sup _{s \in[0, t]}\left|W_{s}\right|^{2} \sup _{x}\left|f^{\prime \prime}(x)\right| \\
& \leq \varepsilon+\frac{8}{\eta^{2}} \mathbb{E}\left|W_{t}\right|^{2} \sup _{x}\left|f^{\prime \prime}(x)\right| \\
& \leq \varepsilon+\frac{8 t}{\eta^{2}} \sup _{x}\left|f^{\prime \prime}(x)\right|
\end{aligned}
$$

where we applied Doob's maximal inequality. Therefore, given $\varepsilon>0$, we can take $t_{0}>0$ small enough such that, for $t \in\left(0, t_{0}\right]$, we have

$$
\varepsilon+\frac{4 t}{\eta^{2}} \sup _{x}\left|f^{\prime \prime}(x)\right| \leq 2 \varepsilon
$$

Theorem 7.7. Let $\{T(t) ; t \geq 0\}$ be a contraction semi-group and A its infinitesimal generator with domain $D(A)$. Then
(1) If $f \in \mathcal{B}_{E}$ is such that $\lim _{t \downarrow 0} T(t) f=f$, then for $t \geq 0$ it holds

$$
\int_{0}^{t} T(s) f d s \in D(A) \quad \text { and } \quad A\left(\int_{0}^{t} T(s) f d s\right)=T(t) f-f
$$

(2) If $f \in D(A)$ and $t \geq 0$, then $T(t) f \in D(A)$ and

$$
\lim _{s \downarrow 0} \frac{T(t+s) f-T(t) f}{s}=A T(t) f=T(t) A f .
$$

(3) If $f \in D(A)$ and $t \geq 0$, then $\int_{0}^{t} T(s) f d s \in D(A)$ and

$$
T(t) f-f=A \int_{0}^{t} T(s) f d s=\int_{0}^{t} A T(s) f d s=\int_{0}^{t} T(s) A f d s
$$

Proof. (1) If $\lim _{t \downarrow 0} T(t) f=f$, then

$$
\lim _{s \downarrow u} T(s) f=\lim _{t \downarrow 0} T(u+t) f=\lim _{t \downarrow 0} T(u) T(t) f=T(u) \lim _{t \downarrow 0} T(t) f=T(u) f
$$

where we used the continuity of $T(u): \mathcal{B}_{E} \rightarrow \mathcal{B}_{E}$. This continuity from the right also implies that the Riemann integral

$$
\int_{0}^{t} T(s+u) f d u
$$

exists for all $t, s \geq 0$ if we use in the discretizations the right-hand end point: for example if we set $t_{i}^{n}:=\frac{t i}{n}$, then

$$
\sum_{i=1}^{n} T\left(t_{i}^{n}\right) f\left(t_{i}^{n}-t_{i-1}^{n}\right) \rightarrow \int_{0}^{t} T(u) f d u, \quad n \rightarrow \infty
$$

and therefore

$$
\begin{array}{r}
T(s) \int_{0}^{t} T(u) f d u=T(s)\left(\int_{0}^{t} T(u) f d u-\sum_{i=1}^{n} T\left(t_{i}^{n}\right) f\left(t_{i}^{n}-t_{i-1}^{n}\right)\right) \\
+\sum_{i=1}^{n} T(s) T\left(t_{i}^{n}\right) f\left(t_{i}^{n}-t_{i-1}^{n}\right)
\end{array}
$$

$$
\rightarrow \quad \int_{0}^{t} T(s+u) f d u
$$

This implies

$$
\begin{aligned}
\frac{T(s)-I}{s} \int_{0}^{t} T(u) f d u & =\frac{1}{s}\left(\int_{0}^{t} T(s+u) f d u-\int_{0}^{t} T(u) f d u\right) \\
& =\frac{1}{s}\left(\int_{s}^{t+s} T(u) f d u-\int_{0}^{t} T(u) f d u\right) \\
& =\frac{1}{s}\left(\int_{t}^{t+s} T(u) f d u-\int_{0}^{s} T(u) f d u\right) \\
& \rightarrow T(t) f-f, \quad s \downarrow 0 .
\end{aligned}
$$

Since the RHS converges to $T(t) f-f \in \mathcal{B}_{E}$ we get $\int_{0}^{t} T(u) f d u \in D(A)$ and

$$
A \int_{0}^{t} T(u) f d u=T(t) f-f
$$

(2) If $f \in D(A)$, then

$$
\frac{T(s) T(t) f-T(t) f}{s}=\frac{T(t)(T(s) f-f)}{s} \rightarrow T(t) A f, \quad s \downarrow 0 .
$$

Hence $T(t) f \in D(A)$ and $A T(t) f=T(t) A f$.
(3) If $f \in D(A)$, then $\frac{T(s) f-f}{s} \rightarrow A f$ and therefore $T(s) f-f \rightarrow 0$ for $s \downarrow 0$.

Then, by (1), we get $\int_{0}^{t} T(u) f d u \in D(A)$. From (2) we get by integrating

$$
\int_{0}^{t} \lim _{s \downarrow 0} \frac{T(s+u) f-T(u) f}{s} d u=\int_{0}^{t} A T(u) f d u=\int_{0}^{t} T(u) A f d u .
$$

On the other hand, in the proof of (1) we have shown that

$$
\int_{0}^{t} \frac{T(s+u) f-T(u) f}{s} d u=\frac{T(s)-I}{s} \int_{0}^{t} T(u) f d u
$$

Since $\frac{T(s+u) f-T(u) f}{s}$ converges in \mathcal{B}_{E} we may interchange limit and integral:

$$
\begin{aligned}
\int_{0}^{t} \lim _{s \downarrow 0} \frac{T(s+u) f-T(u) f}{s} d u & =\lim _{s \downarrow 0} \frac{T(s)-I}{s} \int_{0}^{t} T(u) f d u \\
& =A \int_{0}^{t} T(u) f d u
\end{aligned}
$$

7.3 Martingales and Dynkin's formula

Definition 7.8 (martingale). An \mathbb{F}-adapted stochastic process $X=\left\{X_{t} ; t \geq\right.$ $0\}$ such that $\mathbb{E}\left|X_{t}\right|<\infty$ for all $t \geq 0$ is called \mathbb{F}-martingale (submartingale, supermartingale) if for all $0 \leq s \leq t<\infty$ it holds

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=(\geq, \leq) X_{s} \quad \text { a.s. }
$$

Theorem 7.9 (Dynkin's formula). Let X be a homogeneous Markov process with càdlàg paths for all $\omega \in \Omega$ and transition function $\left\{P_{t}(x, A)\right\}$. Let $\{T(t) ; t \geq 0\}$ denote its semi-group

$$
T(t) f(x):=\int_{E} f(y) P_{t}(x, d y) \quad \text { for } \quad f \in \mathcal{B}_{E}
$$

and $(A, D(A))$ its generator. Then, for each $g \in D(A)$ the stochastic process $\left\{M_{t} ; t \geq 0\right\}$ is an $\left\{\mathcal{F}_{t}^{X} ; t \geq 0\right\}$ martingale, where

$$
\begin{equation*}
M_{t}:=g\left(X_{t}\right)-g\left(X_{0}\right)-\int_{0}^{t} A g\left(X_{s}\right) d s \tag{7.3}
\end{equation*}
$$

Remark 7.10. The integral $\int_{0}^{t} A g\left(X_{s}\right) d s$ is understood as a Lebesgue-integral where for each $\omega \in \Omega$, i.e.

$$
\int_{0}^{t} A g\left(X_{s}\right)(\omega) d s:=\int_{0}^{t} A g\left(X_{s}\right)(\omega) \lambda(d s)
$$

where λ denotes the Lebesgue measure.
Proof. Since by Definition 7.5 we have $A: D(A) \rightarrow \mathcal{B}_{E}$, it follows $A g \in \mathcal{B}_{E}$, which means especially

$$
A g:(E, \mathcal{B}(E)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

Since X has càdlàg paths and is adapted, it is (see Lemma 6.2) progressively measurable, i.e.

$$
X:\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right) \rightarrow(E, \mathcal{B}(E))
$$

Hence for the composition we have

$$
\operatorname{Ag}(X .):\left([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_{t}\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

Moreover, $A g$ is bounded as it is from \mathcal{B}_{E}. So the integral

$$
\int_{0}^{t} A g\left(X_{s}(\omega)\right) \lambda(d s)
$$

w.r.t. the Lebesgue measure λ is well-defined for $\omega \in \Omega$. Fubini's theorem implies that M_{t} is \mathcal{F}_{t}^{X} - measurable. Since g and $A g$ are bounded we have that $\mathbb{E}\left|M_{t}\right|<\infty$. From (7.3) we get, a.s.,

$$
\begin{aligned}
& \mathbb{E}\left[M_{t+h} \mid \mathcal{F}_{t}^{X}\right]+g\left(X_{0}\right) \\
= & \mathbb{E}\left[g\left(X_{t+h}\right)-\int_{0}^{t+h} A g\left(X_{s}\right) d s \mid \mathcal{F}_{t}^{X}\right] \\
= & \mathbb{E}\left[\left(g\left(X_{t+h}\right)-\int_{t}^{t+h} A g\left(X_{s}\right) d s\right) \mid \mathcal{F}_{t}^{X}\right]-\int_{0}^{t} A g\left(X_{s}\right) d s .
\end{aligned}
$$

The Markov property from Definition 3.1 (equation (3.1)) implies that

$$
\mathbb{E}\left[g\left(X_{t+h}\right) \mid \mathcal{F}_{t}^{X}\right]=\int_{E} g(y) P_{h}\left(X_{t}, d y\right)
$$

We show next that $\mathbb{E}\left[\int_{t}^{t+h} A g\left(X_{s}\right) d s \mid \mathcal{F}_{t}^{X}\right]=\int_{t}^{t+h} \mathbb{E}\left[A g\left(X_{s}\right) \mid \mathcal{F}_{t}^{X}\right] d s$, where we take as version for $\mathbb{E}\left[\operatorname{Ag}\left(X_{s}\right) \mid \mathcal{F}_{t}^{X}\right]$ the expressiom $\int_{E} A g(y) P_{s-t}\left(X_{t}, d y\right)$ which is possible due to the Markov property of X. Since $g \in D(A)$ we know that $A g$ is a bounded function so that we can use Fubini's theorem to show that for any $G \in \mathcal{F}_{t}^{X}$ it holds

$$
\begin{aligned}
\int_{\Omega} \int_{t}^{t+h} A g\left(X_{s}\right) d s \mathbb{1}_{G} d \mathbb{P} & =\int_{t}^{t+h} \int_{\Omega} A g\left(X_{s}\right) \mathbb{1}_{G} d \mathbb{P} d s \\
& =\int_{t}^{t+h} \int_{\Omega} \int_{E} A g(y) P_{s-t}\left(X_{t}, d y\right) \mathbb{1}_{G} d \mathbb{P} d s
\end{aligned}
$$

so that

$$
\mathbb{E}\left[\left(g\left(X_{t+h}\right)-\int_{t}^{t+h} A g\left(X_{s}\right) d s\right) \mid \mathcal{F}_{t}^{X}\right]-\int_{0}^{t} A g\left(X_{s}\right) d s
$$

$$
\begin{aligned}
=\int_{E} g(y) P_{h}\left(X_{t}, d y\right)-\int_{t}^{t+h} & \int_{E} A g(y) P_{s-t}\left(X_{t}, d y\right) d s \\
& -\int_{0}^{t} A g\left(X_{s}\right) d s
\end{aligned}
$$

The previous computations and relation $T(h) f\left(X_{t}\right)=\int_{E} f(y) P_{h}\left(X_{t}, d y\right)$ imply

$$
\begin{aligned}
& \mathbb{E} {\left[M_{t+h} \mid \mathcal{F}_{t}^{X}\right]+g\left(X_{0}\right) } \\
&=\int_{E} g(y) P_{h}\left(X_{t}, d y\right)-\int_{t}^{t+h} \int_{E} A g(y) d s P_{s-t}\left(X_{t}, d y\right) d s-\int_{0}^{t} A g\left(X_{s}\right) d s \\
&=T(h) g\left(X_{t}\right)-\int_{t}^{t+h} T(s-t) A g\left(X_{t}\right) d s-\int_{0}^{t} A g\left(X_{s}\right) d s \\
&=T(h) g\left(X_{t}\right)-\int_{0}^{h} T(u) A g\left(X_{t}\right) d u-\int_{0}^{t} A g\left(X_{s}\right) d s \\
&=T(h) g\left(X_{t}\right)-T(h) g\left(X_{t}\right)+g\left(X_{t}\right)-\int_{0}^{t} A g\left(X_{s}\right) d s \\
&=g\left(X_{t}\right)-\int_{0}^{t} A g\left(X_{s}\right) d s \\
&=M_{t}+g\left(X_{0}\right)
\end{aligned}
$$

where we used Theorem 7.7(3).

8 Weak solutions of SDEs and martingale problems

We recall the definition of a weak solution of an SDE.
Definition 8.1. Assume that $\sigma_{i j}, b_{i}:\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are locally bounded. A weak solution of

$$
\begin{equation*}
d X_{t}=\sigma\left(X_{t}\right) d B_{t}+b\left(X_{t}\right) d t, \quad X_{0}=x, \quad t \geq 0 \tag{8.1}
\end{equation*}
$$

is a triplet $\left(X_{t}, B_{t}\right)_{t \geq 0},(\Omega, \mathcal{F}, \mathbb{P}),\left(\mathcal{F}_{t}\right)_{t \geq 0}$, such that the following holds:
(1) $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \geq 0}\right)$ satisfies the usual conditions:

- $(\Omega, \mathcal{F}, \mathbb{P})$ is complete.
- All null-sets of \mathcal{F} belong to \mathcal{F}_{0}.
- The filtration is right-continuous.
(2) X is a d-dimensional continuous and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ adapted process.
(3) $\left(B_{t}\right)_{t \geq 0}$ is an m-dimensional $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motion.
(4) For $t \geq 0$ and $1 \leq i \leq d$ one has

$$
X_{t}^{(i)}=x^{(i)}+\sum_{j=1}^{m} \int_{0}^{t} \sigma_{i j}\left(X_{u}\right) d B_{u}^{(j)}+\int_{0}^{t} b_{i}\left(X_{u}\right) d u \text { a.s. }
$$

Let $a_{i j}(x):=\sum_{k=1}^{m} \sigma_{i k}(x) \sigma_{j k}(x)$, i.e. in the matrix notation $a(x):=\sigma(x) \sigma^{T}(x)$. Consider the differential operator

$$
\begin{aligned}
A f(x) & :=\frac{1}{2} \sum_{i j} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)+\sum_{i} b_{i}(x) \frac{\partial}{\partial x_{i}} f(x), \\
D(A) & :=C_{c}^{2}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

the twice continuously differentiable functions with compact support in \mathbb{R}^{d}. Then it follows from Itô's formula that

$$
f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} A f(X(s)) d s=\int_{0}^{t} \nabla f\left(X_{s}\right) \sigma\left(X_{s}\right) d B_{s} \text { a.s. }
$$

is a martingale.

Definition 8.2 (canonical path-space). (1) By $\Omega:=C_{\mathbb{R}^{d}}([0, \infty))$ we denote the space of continuous functions $\omega:[0, \infty) \rightarrow \mathbb{R}^{d}$.
(2) For $\omega, \bar{\omega} \in \Omega$ we let

$$
d(\omega, \bar{\omega}):=\sum_{n=1}^{\infty} \frac{1}{2^{n}} \frac{\sup _{0 \leq t \leq n}|\omega(t)-\bar{\omega}(t)|}{1+\sup _{0 \leq t \leq n}|\omega(t)-\bar{\omega}(t)|}
$$

(3) We set

$$
\mathcal{F}_{t}^{X}:=\sigma\left\{X_{s}, s \in[0, t]\right\} \quad \text { where } \quad X_{s}: C_{\mathbb{R}^{d}}([0, \infty)) \rightarrow \mathbb{R}^{d}: \omega \mapsto \omega(s)
$$

is the coordinate mapping.
Remark 8.3. (1) $\left[C_{\mathbb{R}^{d}}([0, \infty)), d\right]$ is a complete separable metric space, see [5, Problem 2.4.1].
(2) For $0 \leq t \leq u$ we have $\mathcal{F}_{t}^{X} \subseteq \mathcal{F}_{u}^{X} \subseteq \mathcal{B}\left(C_{\mathbb{R}^{d}}([0, \infty))\right)$, see [5, Problem 2.4.2].

We define local martingales to introduce the concept of a martingale problem:
Definition 8.4 (local martingale). For a stochastic basis $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \geq 0}\right)$ satisfying the usual conditions, a continuous $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ adapted process $M=$ $\left(M_{t}\right)_{t \geq 0}$ with $M_{0}=0$ is a local martingale if there exists a sequence of stopping times $\tau_{n}: \Omega \rightarrow[0, \infty]$ with $\tau_{1} \leq \tau_{2} \leq \tau_{3} \leq \ldots \uparrow \infty$ such that the stopped process $M^{\tau_{n}}$ given by $M_{t}^{\tau_{n}}:=M_{\tau_{n} \wedge t}$ is a martingale for each $n \geq 1$.

Example 8.5 ([6]). Let $\alpha>1$. Then the process which solves

$$
X_{t}=1+\int_{0}^{t} X_{s}^{\alpha} d B_{s}
$$

is a local martingale but not a martingale.
Definition $8.6\left(C_{\mathbb{R}^{d}}([0, \infty))\right.$ - martingale problem). Given $(s, x) \in[0, \infty) \times$ \mathbb{R}^{d}, a solution to the $C_{\mathbb{R}^{d}}([0, \infty))$ - martingale problem for the operator A is a probability measure \mathbb{P} on $\left(C_{\mathbb{R}^{d}}([0, \infty)), \overline{\mathcal{B}}\left(C_{\mathbb{R}^{d}}([0, \infty))\right)^{\mathbb{P}}\right)$, where

$$
{\overline{\mathcal{B}}\left(C_{\mathbb{R}^{d}}([0, \infty))\right)^{\mathbb{P}}}^{\mathbb{P}}
$$

is the \mathbb{P}-completion of $\mathcal{B}\left(C_{\mathbb{R}^{d}}([0, \infty))\right)$, satisfying

$$
\mathbb{P}(\{\omega \in \Omega: \omega(t)=x, \quad 0 \leq t \leq s\})=1
$$

such that for each $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ the process $\left\{M_{t}^{f} ; t \geq s\right\}$ with

$$
M_{t}^{f}:=f\left(X_{t}\right)-f\left(X_{s}\right)-\int_{s}^{t} A f\left(X_{u}\right) d u
$$

is a \mathbb{P}-martingale with respect to $\left(\left(\mathcal{F}_{t}^{X, \mathbb{P}}\right)_{+}\right)_{t \geq s}$, where $\left(\mathcal{F}_{t}^{X, \mathbb{P}}\right)_{t \geq 0}$ is the augmentation under \mathbb{P} of $\left(\mathcal{F}_{t}^{X}\right)_{t \geq 0}$, and $\left(\mathcal{F}_{t}^{X, \mathbb{P}}\right)_{+}=\bigcap_{s>t} \mathcal{F}_{s}^{X, \mathbb{P}}$.

Theorem 8.7. Given by a probability measure \mathbb{P} on

$$
\left(C_{\mathbb{R}^{d}}([0, \infty)), \mathcal{B}\left(C_{\mathbb{R}^{d}}[0, \infty)\right)\right)
$$

the following assertions are equivalent:
(1) \mathbb{P} is a solution to the $C_{\mathbb{R}^{d}}([0, \infty))$ - martingale problem for the operator $(A, D(A))$.
(2) There is an extension of the stochastic basis

$$
\left(C_{\mathbb{R}^{d}}([0, \infty)), \overline{\mathcal{B}\left(C_{\mathbb{R}^{d}}([0, \infty))\right)^{\mathbb{P}}}, \mathbb{P},\left(\left(\mathcal{F}_{t}^{X, \mathbb{P}}\right)_{+}\right)_{t \geq 0}\right)
$$

such that the process $\left(X_{t}\right)_{t \geq 0}$ becomes a weak solution to (8.1).
Proof. (2) \Rightarrow (1) follows from Itô's formula as explained above.
$(1) \Rightarrow(2)$ We will show this direction only for the case $d=m$, see $[5$, Proposition 5.4.6] for the general case. We assume that X is a solution of the $C_{\mathbb{R}^{d}}([0, \infty))$ - martingale problem for the operator A.
(a) We observe that for any $i=1, \ldots, d$ and $f(x):=x_{i}$ the process $\left\{M_{t}^{i}:=\right.$ $\left.M_{t}^{f} ; t \geq 0\right\}$ is a continuous, local martingale. This can be seen as follows: We define the stopping times for $n>\max \left\{\left|x^{(1)}\right|, \ldots,\left|x^{(d)}\right|\right\}$ by

$$
\tau_{n}:=\inf \left\{t>0: \max \left\{\left|X_{t}^{(1)}\right|, \ldots,\left|X_{t}^{(d)}\right|\right\}=n\right\}
$$

Then we can find a function $g_{n} \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ such that

$$
\left(M^{i}\right)^{\tau_{n}}=\left(M^{g_{n}}\right)^{\tau_{n}}
$$

By assumption $M^{g_{n}}$ is a continuous martingale and it follows from the optional sampling theorem that the stopped process $\left(M^{g_{n}}\right)^{\tau_{n}}$ is also a continuous martingale. In particular we have

$$
M_{t}^{i}=X_{t}^{(i)}-x^{(i)}-\int_{0}^{t} b_{i}\left(X_{s}\right) d s
$$

Since X is continuous and b locally bounded, it holds

$$
\int_{0}^{t}\left|b_{i}\left(X_{s}(\omega)\right)\right| d s<\infty \quad \text { for all } \quad \omega \in \Omega \text { and } t \geq 0
$$

(b) Also for $f(x):=x_{i} x_{j}$ for fixed i, j the process $M_{t}^{(i j)}:=M_{t}^{f}$, defined by

$$
M_{t}^{i j}=X_{t}^{(i)} X_{t}^{(j)}-x^{(i)} x^{(j)}-\int_{0}^{t} X_{s}^{(i)} b_{j}\left(X_{s}\right)+X_{s}^{(j)} b_{i}\left(X_{s}\right)+a_{i j}\left(X_{s}\right) d s
$$

is a continuous, local martingale by the same reasoning as in step (a). We notice that

$$
M_{t}^{i} M_{t}^{j}-\int_{0}^{t} a_{i j}\left(X_{s}\right) d s=M_{t}^{i j}-x^{(i)} M_{t}^{j}-x^{(j)} M_{t}^{i}-R_{t}
$$

where

$$
\begin{aligned}
R_{t}:= & \int_{0}^{t}\left(X_{s}^{(i)}-X_{t}^{(i)}\right) b_{j}\left(X_{s}\right) d s+\int_{0}^{t}\left(X_{s}^{(j)}-X_{t}^{(j)}\right) b_{i}\left(X_{s}\right) d s \\
& +\int_{0}^{t} b_{i}\left(X_{s}\right) d s \int_{0}^{t} b_{j}\left(X_{s}\right) d s .
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
& M_{t}^{i} M_{t}^{j}-\int_{0}^{t} a_{i j}\left(X_{s}\right) d s \\
= & \left(X_{t}^{(i)}-x^{(i)}-\int_{0}^{t} b_{i}\left(X_{s}\right) d s\right)\left(X_{t}^{(j)}-x^{(j)}-\int_{0}^{t} b_{j}\left(X_{s}\right) d s\right)-\int_{0}^{t} a_{i j}\left(X_{s}\right) d s \\
= & X_{t}^{(i)} X_{t}^{(j)}-X_{t}^{(i)}\left(x^{(j)}+\int_{0}^{t} b_{j}\left(X_{s}\right) d s\right)-\left(x^{(i)}+\int_{0}^{t} b_{i}\left(X_{s}\right) d s\right) X_{t}^{(j)} \\
& +\left(x^{(j)}+\int_{0}^{t} b_{j}\left(X_{s}\right) d s\right)\left(x^{(i)}+\int_{0}^{t} b_{i}\left(X_{s}\right) d s\right)-\int_{0}^{t} a_{i j}\left(X_{s}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
= & M_{t}^{i j}+\underbrace{x^{(i)}} x^{(j)}+\int_{0}^{t} X_{s}^{(i)} b_{j}\left(X_{s}\right)+X_{s}^{(j)} b_{i}\left(X_{s}\right) d s \\
& -X_{t}^{(i)} x^{(j)}-X_{t}^{(j)} \underbrace{x^{(i)}}-\int_{0}^{t} X_{t}^{(i)} b_{j}\left(X_{s}\right)+X_{t}^{(j)} b_{i}\left(X_{s}\right) d s \\
& +x^{(i)} x^{(j)}+x^{(j)} \int_{0}^{t} b_{i}\left(X_{s}\right) d s+\underbrace{x^{(i)}} \int_{0}^{t} b_{j}\left(X_{s}\right) d s+\int_{0}^{t} b_{j}\left(X_{s}\right) d s \int_{0}^{t} b_{i}\left(X_{s}\right) d s \\
= & M_{t}^{i j}+\int_{0}^{t}\left(X_{s}^{(i)}-X_{t}^{(i)}\right) b_{j}\left(X_{s}\right)+\left(X_{s}^{(j)}-X_{t}^{(j)}\right) b_{i}\left(X_{s}\right) d s \\
& -\underbrace{x^{(i)}}(\underbrace{-x^{(j)}+X_{t}^{(j)}-\int_{0}^{t} b_{j}\left(X_{s}\right) d s}) \\
& -x^{(j)}\left(-x^{(i)}+X_{t}^{(i)}-\int_{0}^{t} b_{i}\left(X_{s}\right) d s\right)+\int_{0}^{t} b_{j}\left(X_{s}\right) d s \int_{0}^{t} b_{i}\left(X_{s}\right) d s .
\end{aligned}
$$

Since $X_{s}^{(i)}-X_{t}^{(i)}=M_{s}^{i}-M_{t}^{i}+\int_{s}^{t} b_{j}\left(X_{u}\right) d u$ it follows by Itô's formula that

$$
\begin{aligned}
R_{t}= & \int_{0}^{t}\left(X_{s}^{(i)}-X_{t}^{(i)}\right) b_{j}\left(X_{s}\right) d s+\int_{0}^{t}\left(X_{s}^{(j)}-X_{t}^{(j)}\right) b_{i}\left(X_{s}\right) d s \\
& +\int_{0}^{t} b_{i}\left(X_{s}\right) d s \int_{0}^{t} b_{j}\left(X_{s}\right) d s \\
= & \int_{0}^{t}\left(M_{s}^{i}-M_{t}^{i}\right) b_{j}\left(X_{s}\right) d s+\int_{0}^{t}\left(M_{s}^{j}-M_{t}^{j}\right) b_{i}\left(X_{s}\right) d s \\
= & -\int_{0}^{t} \int_{0}^{s} b_{j}\left(X_{u}\right) d u d M_{s}^{i}-\int_{0}^{t} \int_{0}^{s} b_{i}\left(X_{u}\right) d u d M_{s}^{j} .
\end{aligned}
$$

Since R_{t} is a continuous, local martingale and a process of bounded variation at the same time, $R_{t}=0$ a.s. for all t. Then

$$
M_{t}^{i} M_{t}^{j}-\int_{0}^{t} a_{i j}\left(X_{s}\right) d s
$$

is a continuous, local martingale, and

$$
\left\langle M^{i}, M^{j}\right\rangle_{t}=\int_{0}^{t} a_{i j}\left(X_{s}\right) d s
$$

By the Martingale Representation Theorem A. 3 we know that there exists an extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ of $(\Omega, \mathcal{F}, \mathbb{P})$ carrying a d-dimensional $\left(\tilde{\mathcal{F}}_{t}\right)$ Brownian motion \tilde{B} such that $\left(\tilde{\mathcal{F}}_{t}\right)$ satisfies the usual conditions, and measurable, adapted processes $\xi^{i, j}, i, j=1, \ldots, d$, with

$$
\tilde{\mathbb{P}}\left(\int_{0}^{t}\left(\xi_{s}^{i, j}\right)^{2} d s<\infty\right)=1
$$

such that

$$
M_{t}^{i}=\sum_{j=1}^{d} \int_{0}^{t} \xi_{s}^{i, j} d \tilde{B}_{s}^{j}
$$

We have now

$$
X_{t}=x+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \xi_{s} d \tilde{B}_{s}
$$

It remains to show that there exists an d-dimensional $\left(\tilde{\mathcal{F}}_{t}\right)$ Brownian motion B on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ such that $\tilde{\mathbb{P}}$ a.s.

$$
\int_{0}^{t} \xi_{s} d \tilde{B}_{s}=\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}, \quad t \in[0, \infty)
$$

For this we will use the following lemma.
Lemma 8.8. Let

$$
\mathcal{D}:=\left\{(\xi, \sigma) ; \xi \text { and } \sigma \text { are } d \times d \text { matrices with } \xi \xi^{T}=\sigma \sigma^{T}\right\} .
$$

On \mathcal{D} there exists a Borel-measurable map $\mathcal{R}:\left(\mathcal{D}, \mathcal{D} \cap \mathcal{B}\left(\mathbb{R}^{d^{2}}\right) \rightarrow\left(\mathbb{R}^{d^{2}}, \mathcal{B}\left(\mathbb{R}^{d^{2}}\right)\right)\right.$ such that

$$
\sigma=\xi \mathcal{R}(\xi, \sigma), \quad \mathcal{R}(\xi, \sigma) \mathcal{R}^{T}(\xi, \sigma)=I ; \quad(\xi, \sigma) \in \mathcal{D}
$$

We set

$$
B_{t}=\int_{0}^{t} \mathcal{R}^{T}\left(\xi_{s}, \sigma\left(X_{s}\right)\right) d \tilde{B}_{s}
$$

Then B is a continuous local martingale and

$$
\left\langle B^{(i)}, B^{(i)}\right\rangle_{t}=\int_{0}^{t} \mathcal{R}\left(\xi_{s}, \sigma\left(X_{s}\right)\right) \mathcal{R}^{T}\left(\xi_{s}, \sigma\left(X_{s}\right)\right) d s=t \delta_{i j}
$$

Lévy's theorem (see [5, Theorem 3.3.16]) implies that B is a Brownian motion.

Usig Theorem 8.7 one can derive the following statement, which is the second main result of this section:

Theorem 8.9 (Kolmogorov 1965, Stroock-Varadhan 1969). If $b_{i}, \sigma_{i j}$: $\mathbb{R}^{d} \rightarrow \mathbb{R}$ are continuoius and bounded and if μ is an initial distribution on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ such that

$$
\int_{\mathbb{R}^{d}}|x|^{p} \mu(d x)<\infty \quad \text { for some } \quad p \in(2, \infty)
$$

then there is a weak solution to the $S D E$

$$
X_{t}=X_{0}+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t} b\left(X_{s}\right) d s \quad \text { with } \quad \operatorname{law}\left(X_{0}\right)=\mu
$$

9 Feller processes

9.1 Feller semi-groups, Feller transition functions and Feller processes

Definition 9.1.

(1) $C_{0}\left(\mathbb{R}^{d}\right):=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}: f\right.$ continuous, $\left.\lim _{|x| \rightarrow \infty}|f(x)|=0\right\}$ is equipped with the norm $\|f\|=\|f\|_{C_{0}\left(\mathbb{R}^{d}\right)}:=\sup _{x \in \mathbb{R}^{d}}|f(x)|$.
(2) $\{T(t) ; t \geq 0\}$ is a Feller semi-group if
(a) $T(t): C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ is positive for all $t \geq 0$, i.e. $T(t) f(x) \geq 0$ $\forall x$ if $f: \mathbb{R}^{d} \rightarrow[0, \infty)$,
(b) $\{T(t) ; t \geq 0\}$ is a strongly continuous contraction semi-group.
(3) A FELLER semi-group is conservative if for all $x \in \mathbb{R}^{d}$ it holds

$$
\sup _{f \in C_{0}\left(\mathbb{R}^{d}\right),\|f\|=1}|T(t) f(x)|=1
$$

Remark 9.2.

(1) $\left[C_{0}\left(\mathbb{R}^{d}\right),\|\cdot\|_{C_{0}\left(\mathbb{R}^{d}\right)}\right]$ is a Banach space.
(2) The subspace $C_{c}\left(\mathbb{R}^{d}\right)$ of compactly supported functions is dense in $C_{0}\left(\mathbb{R}^{d}\right)$.

Definition 9.3. If E is a locally compact Hausdorff space, a Borel measure on $(E, \mathcal{B}(E))$ is a Radon measure provided that
(1) $\mu(K)<\infty$ for all compact sets K,
(2) $\mu(A)=\inf \{\mu(U): U \supseteq A, U$ open $\}$ for all $A \in \mathcal{B}(E)$,
(3) $\mu(B)=\sup \{\mu(K): K \subseteq B, K$ compact $\}$ for all open set B.

We recall the Riesz representation theorem (see, for example, [3, Theorem 7.2]): If E is a locally compact Hausdorff space, L a positive linear functional
on $C_{c}(E):=\{F: E \rightarrow \mathbb{R}:$ continuous function with compact support $\}$, then there exists a unique Radon measure μ on $(E, \mathcal{B}(E))$ such that

$$
L F=\int_{E} F(y) \mu(d y) .
$$

We use this theorem to prove the following:

Theorem 9.4. Let $\{T(t) ; t \geq 0\}$ be a conservative Feller semi-group on $C_{0}\left(\mathbb{R}^{d}\right)$. Then there exists a homogeneous transition function $\left\{P_{t}: t \geq 0\right\}$, $P_{t}: \mathbb{R}^{d} \times \mathcal{B}\left(\mathbb{R}^{d}\right) \rightarrow[0,1]$, such that

$$
T(t) f(x)=\int_{\mathbb{R}^{d}} f(y) P_{t}(x, d y) \quad \text { for all } \quad x \in \mathbb{R}^{d} \text { and } f \in C_{0}\left(\mathbb{R}^{d}\right)
$$

Proof. By the Riesz representation theorem we get for each $x \in \mathbb{R}^{d}$ and each $t \geq 0$ a measure $P_{t}(x, \cdot)$ on $\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ such that

$$
(T(t) f)(x)=\int_{\mathbb{R}^{d}} f(y) P_{t}(x, d y), \quad \forall f \in C_{c}\left(\mathbb{R}^{d}\right)
$$

We need to show that this family of measures $\left\{P_{t}(x, \cdot) ; t \geq 0, x \in \mathbb{R}^{d}\right\}$ has all properties of a transition function.
(a) The map $A \mapsto P_{t}(x, A)$ is a probability measure: Since $\left\{P_{t}(x, \cdot)\right.$ is a measure, we only need to check whether $P_{t}\left(x, \mathbb{R}^{d}\right)=1$, which will be an exercise.
(b) For $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ we have to show that

$$
\begin{equation*}
x \mapsto P_{t}(x, A):\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R})) \tag{9.1}
\end{equation*}
$$

We let

$$
\begin{aligned}
& \mathcal{H}:=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R}: \mathcal{B}\left(\mathbb{R}^{d}\right)\right. \text { measurable and bounded, } \\
&\left.T(t) f \text { is } \mathcal{B}\left(\mathbb{R}^{d}\right) \text { measurable }\right\}, \\
& \mathcal{A}:=\left\{\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right] ;-\infty \leq a_{k} \leq b_{k} \leq \infty\right\} \cup \emptyset .
\end{aligned}
$$

By definition we have that $\sigma(\mathcal{A})=\mathcal{B}\left(\mathbb{R}^{d}\right)$. Now we check the assumptions (1), (2), and (3) of Theorem A.2.

- The assumption (2), that \mathcal{H} is a linear space, is obvious.
- The assumption (3), that \mathcal{H} is a monotone class, follows from monotone convergence.
- $\mathbb{1}_{A} \in \mathcal{H}$ for all $A \in \mathcal{A}$ is verified as follows:

First we assume that $-\infty<a_{k} \leq b_{k}<\infty$. In this case we approximate $\mathbb{1}_{A}$ by $f_{n} \in C_{c}\left(\mathbb{R}^{d}\right)$ as follows: let $f_{n}\left(x_{1}, \ldots x_{n}\right):=f_{n, 1}\left(x_{1}\right) \ldots f_{n, d}\left(x_{d}\right)$ with linear, continuous functions

$$
f_{n, k}\left(x_{k}\right):= \begin{cases}1 & a_{k} \leq x_{k} \leq b_{k} \\ 0 & x \leq a_{k}-\frac{1}{n} \text { or } x \geq b_{k}+\frac{1}{n} .\end{cases}
$$

Then $f_{n} \downarrow \mathbb{1}_{A}$. Since $T(t) f_{n} \in C_{0}\left(\mathbb{R}^{d}\right)$ because $f_{n} \in C_{c}\left(\mathbb{R}^{d}\right) \subseteq C_{0}\left(\mathbb{R}^{d}\right)$, we get

$$
T(t) f_{n}:\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

It holds

$$
T(t) f_{n}(x)=\int_{\mathbb{R}^{d}} f_{n}(y) P_{t}(x, d y) \rightarrow P_{t}(x, A) \quad \text { for } \quad n \rightarrow \infty
$$

Hence $P_{t}(\cdot, A):\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, which means $\mathbb{1}_{A} \in \mathcal{H}$. Furthermore, the case $a_{k}=-\infty$ and $b_{k}=\infty$ can be done by monotone convergence again. Applying Theorem A.2, we obtain that \mathcal{H} contains all bounded and $\mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable functions.
(c) The Chapman-Kolmogorov equation for $\left\{P_{t}: t \geq 0\right\}$ we conclude from $T(t+s)=T(t) T(s)$ for all $s, t \geq 0$, which can be again done by approximating $\mathbb{1}_{A}, A \in \mathcal{A}$ and using dominated convergence and the Monotone Class Theorem.
(d) $T(0)=I d$ gives that $P_{0}(x, \cdot)$ is the measure μ_{0} such that

$$
f(x)=(T(0) f)(x)=\int_{\mathbb{R}^{d}} f(y) P_{0}(x, d y)
$$

But this implies that $P_{0}(x, A)=\delta_{x}(A)$, which will be an exercise.

Definition 9.5.

(1) A transition function associated to a conservative FELLER semi-group is called a Feller transition function.
(2) A Markov process having a Feller transition function is called a Feller process.

In general we have the following implications:

Theorem 9.6.

(1) Every càdlàg Feller process is a strong Markov process.
(2) Every strong Markov process is a Markov process.

Now we characterize Feller transition functions:
Theorem 9.7. A transition function $\left\{P_{t}(x, A)\right\}$ is Feller if and only if
(1) $\int_{\mathbb{R}^{d}} f(y) P_{t}(\cdot, d y) \in C_{0}\left(\mathbb{R}^{d}\right)$ for $f \in C_{0}\left(\mathbb{R}^{d}\right)$ and all $t \geq 0$,
(2) $\lim _{t \downarrow 0} \int_{\mathbb{R}^{d}} f(y) P_{t}(x, d y)=f(x)$ for all $f \in C_{0}\left(\mathbb{R}^{d}\right)$ and $x \in \mathbb{R}^{d}$.

Proof. \Longrightarrow is easy to see so that we turn to \Longleftarrow and will show that (1) and (2) imply that $\{T(t) ; t \geq 0\}$ with

$$
T(t) f(x)=\int_{\mathbb{R}^{d}} f(y) P_{t}(x, d y)
$$

is a Feller semi-group.
(a) We know by Theorem 7.4 that $\{T(t) ; t \geq 0\}$ is a contraction semi-group. By (1) we have that $T(t): C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$. And of course, any $T(t)$ is positive. So we only have to show that

$$
\lim _{t \downarrow 0}\|T(t) f-f\|=0 \quad \text { for all } \quad f \in C_{0}\left(\mathbb{R}^{d}\right)
$$

which is the strong continuity.
Since by (1) we have that $T(t) f \in C_{0}\left(\mathbb{R}^{d}\right)$ we conclude by (2) that

$$
\lim _{s \downarrow 0} T(t+s) f(x)=T(t) f(x) \quad \text { for all } \quad x \in \mathbb{R}^{d} .
$$

Hence we have that

- $t \mapsto T(t) f(x)$ is right-continuous,

$$
-x \mapsto T(t) f(x) \text { is continuous. }
$$

This implies (similarly to the proof of the fact that right-continuity and adaptedness implies progressive measurability) that

$$
(t, x) \mapsto T(t) f(x):\left([0, \infty) \times \mathbb{R}^{d}, \mathcal{B}([0, \infty)) \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

(b) By Fubini's theorem we have for any $p>0$, that

$$
x \mapsto \mathcal{R}_{p} f(x):=\int_{0}^{\infty} e^{-p t} T(t) f(x) d t:\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))
$$

where the map $f \mapsto \mathcal{R}_{p} f$ is called the resolvent of order p of $\{T(t) ; t \geq 0\}$. It holds

$$
\lim _{p \rightarrow \infty} p \mathcal{R}_{p} f(x)=f(x)
$$

Indeed, since $\{T(t) ; t \geq 0\}$ is a contraction semi-group, it holds $\left\|T\left(\frac{u}{p}\right) f\right\| \leq$ $\|f\|$ for $u \geq 0$. Hence we can use dominated convergence in the following expression, and it follows from (2) that

$$
\begin{equation*}
p \mathcal{R}_{p} f(x)=\int_{0}^{\infty} p e^{-p t} T(t) f(x) d t=\int_{0}^{\infty} e^{-u} T\left(\frac{u}{p}\right) f(x) d u \rightarrow f(x) \tag{9.2}
\end{equation*}
$$

for $p \rightarrow \infty$. Moreover, one can show that $\mathcal{R}_{p} f \in C_{0}\left(\mathbb{R}^{d}\right)$, so that

$$
\mathcal{R}_{p}: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)
$$

For $p, q>0$ it holds

$$
\begin{aligned}
(q-p) \mathcal{R}_{p} \mathcal{R}_{q} f & =(q-p) \mathcal{R}_{p} \int_{0}^{\infty} e^{-q t} T(t) f d t \\
& =(q-p) \int_{0}^{\infty} e^{-p s} T(s) \int_{0}^{\infty} e^{-q t} T(t) f d t d s \\
& =(q-p) \int_{0}^{\infty} e^{-(p-q) s} \int_{0}^{\infty} e^{-q(t+s)} T(t+s) f d t d s \\
& =(q-p) \int_{0}^{\infty} e^{-(p-q) s} \int_{s}^{\infty} e^{-q u} T(u) f d u d s \\
& =(q-p) \int_{0}^{\infty} e^{-q u} T(u) f \int_{0}^{u} e^{-(p-q) s} d s d u
\end{aligned}
$$

$$
\begin{aligned}
& =(q-p) \int_{0}^{\infty} e^{-q u} T(u) f \frac{1}{q-p}\left(e^{-(p-q) u}-1\right) d u \\
& =-\mathcal{R}_{q} f+\int_{0}^{\infty} e^{-p u} T(u) f d u \\
& =\mathcal{R}_{p} f-\mathcal{R}_{q} f
\end{aligned}
$$

This also implies that

$$
(q-p) \mathcal{R}_{p} \mathcal{R}_{q} f=\mathcal{R}_{p} f-\mathcal{R}_{q} f=(q-p) \mathcal{R}_{q} \mathcal{R}_{p} f
$$

Now, let

$$
\operatorname{Im}\left(\mathcal{R}_{p}\right):=\left\{\mathcal{R}_{p} f ; f \in C_{0}\left(\mathbb{R}^{d}\right)\right\}
$$

If $g \in \operatorname{Im}\left(\mathcal{R}_{p}\right)$, then there exists $f \in C_{0}\left(\mathbb{R}^{d}\right)$ such that $g=\mathcal{R}_{p} f$ and we have

$$
g=\mathcal{R}_{p} f=\mathcal{R}_{q} f+(q-p) \mathcal{R}_{q} \mathcal{R}_{p} f=\mathcal{R}_{q}\left(f+(q-p) \mathcal{R}_{p} f\right) \in \operatorname{Im}\left(\mathcal{R}_{q}\right)
$$

Hence $\operatorname{Im}\left(\mathcal{R}_{p}\right) \subseteq \operatorname{Im}\left(\mathcal{R}_{p}\right)$ and by symmetry, $\operatorname{Im}\left(\mathcal{R}_{p}\right)=\operatorname{Im}\left(\mathcal{R}_{p}\right)$. Let $E:=$ $\operatorname{Im}\left(\mathcal{R}_{p}\right)$. By (9.2) we have

$$
\left\|p \boldsymbol{R}_{p} f\right\| \leq\|f\|
$$

(c) We show that $E \subseteq C_{0}\left(\mathbb{R}^{d}\right)$ is dense. We follow $[3$, Section 7.3] and notice that $C_{0}\left(\mathbb{R}^{d}\right)$ is the closure of $C_{c}\left(\mathbb{R}^{d}\right)$ with respect to $\|f\|:=\sup _{x \in \mathbb{R}^{d}}|f(x)|$.

Assume that $E \subseteq C_{0}\left(\mathbb{R}^{d}\right)$ is not dense. By the Hahn-Banach theorem there is linear and continuous functional $L: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}$ such that $L f=0$ if $f \in E$ and positive for an $f_{0} \in C_{0}\left(\mathbb{R}^{d}\right)$ which is outside the closure of E and given by

$$
L(f)=\int_{\mathbb{R}^{d}} f(x) \mu(d x) \quad \text { for some signed measure } \mu
$$

However, by dominated convergence we have

$$
L\left(f_{0}\right)=\int_{\mathbb{R}^{d}} f_{0}(x) \mu(d x)=\lim _{p \rightarrow \infty} \int_{\mathbb{R}^{d}} p \mathcal{R}_{p} f_{0}(x) \mu(d x)=0
$$

which is a contradiction so that D must be dense.
(d) Now we have

$$
T(t) \mathcal{R}_{p} f(x)=T(t) \int_{0}^{\infty} e^{-p u} T(u) f(x) d u
$$

$$
=e^{p t} \int_{t}^{\infty} e^{-p s} T(s) f(x) d s
$$

Now we fix $p=1$ and consider $f \in E$ so that $f=\mathcal{R}_{1} g$ for some $g \in C_{0}\left(\mathbb{R}^{d}\right)$. This implies

$$
\begin{aligned}
& \left\|T(t) \mathcal{R}_{1} g-\mathcal{R}_{1} g\right\| \\
& =\sup _{x \in \mathbb{R}^{d}}\left|e^{t} \int_{t}^{\infty} e^{-s} T(s) g(x) d u-\int_{0}^{\infty} e^{-u} T(u) g(x) d u\right| \\
& =\sup _{x \in \mathbb{R}^{d}}\left|\left(e^{t}-1\right) \int_{t}^{\infty} e^{-s} T(s) g(x) d u-\int_{0}^{t} e^{-u} T(u) g(x) d u\right| \\
& \leq\left[\left(e^{p t}-1\right)+t\right]\left[\int_{0}^{\infty} e^{-s} d s\right]\|g\| \rightarrow 0, \quad t \downarrow 0 .
\end{aligned}
$$

So we have shown that $\{T(t) ; t \geq 0\}$ is strongly continuous on E. Since $D \subseteq C_{0}\left(\mathbb{R}^{d}\right)$ is dense, we have also show strong continuity on $C_{0}\left(\mathbb{R}^{d}\right)$.

9.2 Càdlàg modifications of Feller processes

In Definition 6.5 we defined a LÉvY process as a stochastic process with a.s. càdlàg paths. In Theorem 6.7 we have shown that a Lévy process (with càdlàg paths) is a strong Markov process. By the Daniell-Kolmogorov Theorem we know that Markov processes exist by Theorem 4.3. But this Theorem does not say anything about path properties.
We will proceed with the definition of a Lévy process in law (and leave it as an exercise to show that such a process is a Feller process). We will prove then that any Feller process has a càdlàg modification.

Definition 9.8 (LÉvy process in law). A stochastic process $X=\left\{X_{t} ; t \geq 0\right\}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with $X_{t}:(\Omega, \mathcal{F}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right)\right)$ is a LÉVY process in law if
(1) X is continuous in probability, i.e. for all $t \geq 0$ and $\varepsilon>0$ one has

$$
\lim _{s \downarrow t} \mathbb{P}\left(\left|X_{s}-X_{t}\right|>\varepsilon\right)=0
$$

(2) $\mathbb{P}\left(X_{0}=0\right)=1$,
(3) for all $0 \leq s \leq t$ one has $X_{t}-X_{s} \stackrel{d}{=} X_{t-s}$,
(4) for all $0 \leq s \leq t$ one has $X_{t}-X_{s}$ is independent of \mathcal{F}_{s}^{X}.

Theorem 9.9. A Lévy process in law is a Feller process.
We shall prove this as an exercise.
Theorem 9.10. Let X be an $\left\{\mathcal{F}_{t} ; t \geq 0\right\}$-submartingale. Then the following holds:
(1) For any countable dense subset $D \subseteq[0, \infty)$ there is a $\Omega^{*} \in \mathcal{F}$ with $\mathbb{P}\left(\Omega^{*}\right)=1$ such that for every $\omega \in \Omega^{*}$ one has

$$
X_{t+}(\omega):=\lim _{s \downarrow t, s \in D} X_{s}(\omega) \quad \text { and } \quad X_{t-}(\omega):=\lim _{s \uparrow t, s \in D} X_{s}(\omega)
$$

exists for all $t \geq 0(t>0$, respectively).
(2) $\left\{X_{t+} ; t \geq 0\right\}$ is an $\left\{\mathcal{F}_{t+} ; t \geq 0\right\}$ submartingale with a.s. càdlàg paths.
(3) Assume that $\left\{\mathcal{F}_{t} ; t \geq 0\right\}$ satisfies the usual conditions. Then X has a càdlàg modification if and only if $t \mapsto \mathbb{E} X_{t}$ is right-continuous.

The proof can be found in [5, Proposition 1.3.14 and Theorem 1.3.13].
Lemma 9.11. Let X be a Feller process. For any $p>0$ and any

$$
f \in C_{0}\left(\mathbb{R}^{d} ;[0, \infty)\right):=\left\{f \in C_{0}\left(\mathbb{R}^{d}\right): f \geq 0\right\}
$$

the process

$$
\left\{e^{-p t} R_{p} f\left(X_{t}\right) ; t \geq 0\right\}
$$

is a supermartingale w.r.t. the natural filtration $\left\{\mathcal{F}_{t}^{X} ; t \geq 0\right\}$ and for any initial distribution $\mathbb{P}_{\nu}\left(X_{0} \in B\right)=\nu(B)$ for $B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.

Proof. Recall that for $p>0$ we defined in the proof of Theorem 9.7 the resolvent

$$
f \mapsto \mathcal{R}_{p} f:=\int_{0}^{\infty} e^{-p t} T(t) f d t, \quad f \in C_{0}\left(\mathbb{R}^{d}\right)
$$

(a) We show that $\mathcal{R}_{p}: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$: Since

$$
\left\|\mathcal{R}_{p} f\right\|=\left\|\int_{0}^{\infty} e^{-p t} T(t) f d t\right\| \leq \int_{0}^{\infty} e^{-p t}\|T(t) f\| d t
$$

and $\|T(t) f\| \leq\|f\|$, we may use dominated convergence, and since $T(t) f \in$ $C_{0}\left(\mathbb{R}^{d}\right)$ it holds

$$
\begin{aligned}
\lim _{x_{n} \rightarrow x} \mathcal{R}_{p} f\left(x_{n}\right) & =\lim _{x_{n} \rightarrow x} \int_{0}^{\infty} e^{-p t} T(t) f\left(x_{n}\right) d t \\
& =\int_{0}^{\infty} e^{-p t} \lim _{x_{n} \rightarrow x} T(t) f\left(x_{n}\right) d t \\
& =\mathcal{R}_{p} f(x)
\end{aligned}
$$

In the same way we verify that $\lim _{\left|x_{n}\right| \rightarrow \infty} \mathcal{R}_{p} f\left(x_{n}\right)=0$.
(b) For $x \in \mathbb{R}^{d}, f \in C_{0}\left(\mathbb{R}^{d} ;[0, \infty)\right)$, and $h>0$ one has

$$
\begin{aligned}
e^{-p h} T(h) \mathcal{R}_{p} f(x) & =e^{-p h} T(h) \int_{0}^{\infty} e^{-p t} T(t) f(x) d t \\
& =\int_{0}^{\infty} e^{-p(t+h)} T(t+h) f(x) d t \\
& =\int_{h}^{\infty} e^{-p u} T(u) f(x) d u \\
& \leq \int_{0}^{\infty} e^{-p u} T(u) f(x) d u \\
& =\mathcal{R}_{p} f(x)
\end{aligned}
$$

(c) The process $\left\{e^{-p t} R_{p} f\left(X_{t}\right) ; t \geq 0\right\}$ is a supermartingale: Let $0 \leq s \leq t$. Since X is a Feller process, it has a transition function, and by Definition 3.1 we may write

$$
\begin{aligned}
\mathbb{E}_{\mathbb{P}_{\nu}}\left[e^{-p t} \mathcal{R}_{p} f\left(X_{t}\right) \mid \mathcal{F}_{s}^{X}\right] & =e^{-p t} \int_{\mathbb{R}^{d}} \mathcal{R}_{p} f(y) P_{t-s}\left(X_{s}, d y\right) \\
& =e^{-p t} T(t-s) \mathcal{R}_{p} f\left(X_{s}\right)
\end{aligned}
$$

From step (b) we conclude

$$
e^{-p t} T(t-s) \mathcal{R}_{p} f\left(X_{s}\right) \leq e^{-p s} \mathcal{R}_{p} f\left(X_{s}\right)
$$

Lemma 9.12. Let Y_{1} and Y_{2} be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in \mathbb{R}^{d}. Then the following holds:

$$
\begin{aligned}
Y_{1}=Y_{2} \quad \text { a.s. } \Longleftrightarrow & \mathbb{E} f_{1}\left(Y_{1}\right) f_{2}\left(Y_{2}\right)=\mathbb{E} f_{1}\left(Y_{1}\right) f_{2}\left(Y_{1}\right) \\
& \text { for all } f_{1}, f_{2} \in C_{0}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Proof. The direction \Longrightarrow is evident. We will use the Monotone Class Theorem A. 2 to verify \Longleftarrow. Let

$$
\begin{aligned}
H:=\left\{h: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}: \quad\right. & h \text { bounded and measurable, } \\
& \left.\mathbb{E} h\left(Y_{1}, Y_{2}\right)=\mathbb{E} h\left(Y_{1}, Y_{1}\right)\right\}
\end{aligned}
$$

As before we can approximate $\mathbb{1}_{\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{2 d}, b_{2 d}\right]}$ for $-\infty<a_{i} \leq b_{i}<\infty$ by continuous functions with values in $[0,1]$. Since by the Monotone Class Theorem the equality

$$
\mathbb{E} h\left(Y_{1}, Y_{2}\right)=\mathbb{E} h\left(Y_{1}, Y_{1}\right)
$$

holds for all $h: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ which are bounded and measurable, we choose $h(x, y):=\mathbb{1}_{\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}^{d}: x \neq y\right\}}$ and infer

$$
\mathbb{P}\left(Y_{1} \neq Y_{2}\right)=\mathbb{P}\left(Y_{1} \neq Y_{1}\right)=0
$$

Theorem 9.13. If X is a Feller process such that there is a dense set $D \subseteq[0, \infty)$ such that

$$
\mathbb{P}\left(\sup _{t \in[0, T] \cap D}\left|X_{t}\right|<\infty\right)=1 \quad \text { for all } \quad T>0
$$

then it has a càdlàg modification.
Sketch of the proof. (a) One-point compactification (Alexandroff extension) of \mathbb{R}^{d} : Let ∂ be a point not in \mathbb{R}^{d} and denote by \mathcal{O} the open sets of \mathbb{R}^{d}. We define a topology \mathcal{O}^{\prime} on $\left(\mathbb{R}^{d}\right)^{\partial}:=\mathbb{R}^{d} \cup\{\partial\}$ as

$$
\begin{aligned}
\mathcal{O}^{\prime}:=\left\{A \subset\left(\mathbb{R}^{d}\right)^{\partial}:\right. & \text { either } A \in \mathcal{O} \\
& \text { or } \left.\partial \in A \text { and } A^{c} \text { is a compact subset of } \mathbb{R}^{d}\right\} .
\end{aligned}
$$

Then $\left(\left(\mathbb{R}^{d}\right)^{\partial}, \mathcal{O}^{\prime}\right)$ is a compact Hausdorff space. Any function $f \in C_{0}\left(\mathbb{R}^{d}\right)$ will be extended to $f \in C_{0}\left(\left(\mathbb{R}^{d}\right)^{\partial}\right)$ by $f(\partial):=0$.
(b) Let $\left(f_{n}\right)_{n=1}^{\infty} \subseteq C_{0}\left(\mathbb{R}^{d} ;[0, \infty)\right)$ be a sequence which separates the points, i.e. for any $x, y \in\left(\mathbb{R}^{d}\right)^{\partial}$ with $x \neq y$ there exists $n \in \mathbb{N}$ such that $f_{n}(x) \neq$ $f_{n}(y)$, where we set $f_{n}(\partial):=0$. Such a sequence exists, which we will not prove here. We want to show that then also

$$
\mathcal{S}:=\left\{\mathcal{R}_{p} f_{n}: p, n \in \mathbb{N}\right\}
$$

is a countable set (which is clear) and separates the points: in fact, it holds for any $p>0$ that

$$
p \mathcal{R}_{p} f(x)=p \int_{0}^{\infty} e^{-p t} T(t) f(x) d t=\int_{0}^{\infty} e^{-u} T\left(\frac{u}{p}\right) f(x) d u .
$$

This implies

$$
\begin{aligned}
\sup _{x \in\left(\mathbb{R}^{d}\right)^{\partial}}\left|p \mathcal{R}_{p} f(x)-f(x)\right| & \left.=\sup _{x \in\left(\mathbb{R}^{d}\right)^{\partial}} \left\lvert\, \int_{0}^{\infty} e^{-u}\left(T\left(\frac{u}{p}\right) f\right)(x)-f(x)\right.\right) d u \mid \\
& \leq \int_{0}^{\infty} e^{-u}\left\|T\left(\frac{u}{p}\right) f-f\right\| d u \rightarrow 0, \quad p \rightarrow \infty
\end{aligned}
$$

by dominated convergence since $\left\|T\left(\frac{u}{p}\right) f-f\right\| \leq 2\|f\|$ and the strong continuity of the semi-group implies $\left\|T\left(\frac{u}{p}\right) f-f\right\| \rightarrow 0$ for $p \rightarrow \infty$. Then, if $x \neq y$ there exists a function f_{n} with $f_{n}(x) \neq f_{n}(y)$ and can find a $p \in \mathbb{N}$ such that $\mathcal{R}_{p} f_{n}(x) \neq \mathcal{R}_{p} f_{n}(y)$.
(c) We fix a set $D \subseteq[0, \infty)$ which is countable and dense. We show that there exists $\Omega^{*} \in \mathcal{F}$ with $\mathbb{P}\left(\Omega^{*}\right)=1$ and such that for all $\omega \in \Omega^{*}$ and for all $n, p \in \mathbb{N}$ one has

$$
\begin{equation*}
[0, \infty) \ni t \mapsto \mathcal{R}_{p} f_{n}\left(X_{t}(\omega)\right) \tag{9.3}
\end{equation*}
$$

has right and left (for $t>0$) limits along D. From Lemma 9.11 we know that

$$
\left\{e^{-p t} \mathcal{R}_{p} f_{n}\left(X_{t}\right) ; t \geq 0\right\} \text { is an }\left\{\mathcal{F}_{t}^{X} ; t \geq 0\right\} \text { supermartingale. }
$$

By Theorem 9.10 (1) we have for any $p, n \in \mathbb{N}$ a set $\Omega_{n, p}^{*} \in \mathcal{F}$ with $\mathbb{P}\left(\Omega_{n, p}^{*}\right)=1$ such that for all $\omega \in \Omega_{n, p}^{*}$ and for all $t \geq 0(t>0$, respectively $)$ the limits

$$
\lim _{s \downarrow t, s \in D} e^{-p s} \mathcal{R}_{p} f_{n}\left(X_{s}(\omega)\right) \quad\left(\lim _{s \uparrow t, s \in D} e^{-p s} \mathcal{R}_{p} f_{n}\left(X_{s}(\omega)\right)\right.
$$

exist. Since $s \mapsto e^{p s}$ is continuous we get assertion (9.3) by setting

$$
\Omega^{*}:=\bigcap_{n=1}^{\infty} \bigcap_{p=1}^{\infty} \Omega_{n, p}^{*}
$$

(d) We show that for all $\omega \in \Omega^{*}$ the map $t \rightarrow X_{t}(\omega)$ has right limits along D : If the limit $\lim _{s \downarrow t, s \in D} X_{s}(\omega)$ does not exist, then there are $x, y \in\left(\mathbb{R}^{d}\right)^{\partial}$ and sequences $\left(s_{n}\right)_{n},\left(\bar{s}_{m}\right)_{m} \subseteq D$ with $s_{n} \downarrow t, \bar{s}_{m} \downarrow t$, such that

$$
\lim _{n \rightarrow \infty} X_{s_{n}}(\omega)=x \quad \text { and } \quad \lim _{m \rightarrow \infty} X_{\bar{s}_{m}}(\omega)=y .
$$

But there are $p, k \in \mathbb{N}$ such that $\mathcal{R}_{p} f_{k}(x) \neq \mathcal{R}_{p} f_{k}(y)$ which is a contradiction to the fact that $s \mapsto \mathcal{R}_{p} f_{k}\left(X_{s}(\omega)\right)$ has right limits along D.
(e) Construction of a right-continuous modification: For $\omega \in \Omega^{*}$ we set for all $t \geq 0$

$$
\tilde{X}_{t}(\omega):=\lim _{s \downarrow t, s \in D} X_{s}(\omega)
$$

and for $\omega \notin \Omega^{*}$ we set $\tilde{X}_{t}(\omega):=x$, where $x \in \mathbb{R}^{d}$ is arbitrary and fixed. Then we have that

$$
\tilde{X}_{t}=X_{t} \quad \text { a.s. }
$$

where we argue as follows: Since for $f, g \in C_{0}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{aligned}
\mathbb{E} f\left(X_{t}\right) g\left(\tilde{X}_{t}\right) & =\lim _{s \downarrow t, s \in D} \mathbb{E} f\left(X_{t}\right) g\left(X_{s}\right) \\
& =\lim _{s \downarrow t, s \in D} \mathbb{E} \mathbb{E}\left[f\left(X_{t}\right) g\left(X_{s}\right) \mid \mathcal{F}_{t}^{X}\right] \\
& =\lim _{s \downarrow t, s \in D} \mathbb{E} f\left(X_{t}\right) \mathbb{E}\left[g\left(X_{s}\right) \mid \mathcal{F}_{t}^{X}\right] \\
& =\lim _{s \downarrow t, s \in D} \mathbb{E} f\left(X_{t}\right) T(s-t) g\left(X_{t}\right) \\
& =\mathbb{E} f\left(X_{t}\right) g\left(X_{t}\right),
\end{aligned}
$$

where we used the Markov property for the second last equation while the last equation follows from the fact that $\|T(s-t) h-h\| \rightarrow t$ for $s \downarrow 0$. By Lemma 9.12 we conclude $\tilde{X}_{t}=X_{t}$ a.s.
It is an exercise to verify that $t \rightarrow \tilde{X}_{t}$ is right-continuous for all $\omega \in \Omega$.
(f) Càdlàg modifications: We use [5, Theorem 1.3.8(v)] which states that almost every path of a right-continuous submartingale has left limits for any $t \in(0, \infty)$. Since $\left\{-e^{-p t} \mathcal{R}_{p} f_{n}\left(\tilde{X}_{t}\right) ; t \geq 0\right\}$ is a right-continuous submartingale, we can proceed as above (using the fact that \mathcal{S} separates the points) so show that $t \mapsto \tilde{X}(\omega)$ is càdlàg for almost all $\omega \in \Omega$.

Remark 9.14. For a LÉvy process in law it can be shown (see [4, Theorem II.2.68]) that the assumption

$$
\mathbb{P}\left(\sup \left\{\left|X_{t}\right|: t \in[0, T] \cap D\right\}<\infty\right)=1
$$

is satisfied for all $T>0$.

A Appendix

Lemma A .1 (Factorization Lemma). Assume $\Omega \neq \emptyset,(E, \mathcal{E})$ be a measurable space, maps $g: \Omega \rightarrow E$ and $F: \Omega \rightarrow \mathbb{R}$, and $\sigma(g)=\left\{g^{-1}(B): B \in \mathcal{E}\right\}$. Then the following assertions are equivalent:
(1) The map F is $(\Omega, \sigma(g)) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable.
(2) There exists a measurable $h:(E, \mathcal{E}) \rightarrow(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $F=h \circ g$.

For the proof see [1, p. 62].
Theorem A. 2 (Monotone Class Theorem for functions). Let $\mathcal{A} \subseteq 2^{\Omega}$ be a π-system that contains Ω and assume $\mathcal{H} \subseteq\{f ; f: \Omega \rightarrow \mathbb{R}\}$ such that
(1) $\mathbb{1}_{A} \in \mathcal{H}$ for $A \in \mathcal{A}$,
(2) \mathcal{H} is a linear space,
(3) If $\left(f_{n}\right)_{n=1}^{\infty} \subseteq \mathcal{H}$ such that $0 \leq f_{n} \uparrow f$ and f is bounded, then $f \in \mathcal{H}$.

Then \mathcal{H} contains all bounded functions that are $\sigma(\mathcal{A})$ measurable.
For the proof see [4].
Theorem A.3. Suppose a stochastic basis $\left(\Omega, \mathcal{F}, \mathbb{P},(\mathcal{F})_{t \geq 0}\right)$ satisfying the usual assumptions and continuous, local martingales $\left(M_{t}^{1}\right)_{t \geq 0}, \ldots,\left(M_{t}^{d}\right)_{t \geq 0}$. If for $1 \leq i, j \leq d$ and all $\omega \in \Omega$ the processes $\left\langle M^{i}, M^{j}\right\rangle_{t}(\omega)$ are absolutely continuous in t, then there exists an extension $\left.\left(\tilde{\Omega}, \mathcal{F}, \tilde{\mathbb{P}},(\tilde{\mathcal{F}})_{t \geq 0}\right)\right)$ of $\left(\Omega, \mathcal{F}, \mathbb{P},(\mathcal{F})_{t \geq 0}\right)$ satisfying the usual conditions and an d-dimensional $(\tilde{\mathcal{F}})_{t \geq 0^{-}}$ Brownian motion $\left(B_{t}\right)_{t \geq 0}$ and progressively measurable processes $\left(X_{t}^{i, j}\right)_{t \geq 0}$ $i, j=1, \ldots, d$ with

$$
\tilde{\mathbb{P}}\left(\int_{0}^{t}\left(X_{s}^{i, j}\right)^{2} d s<\infty\right)=1, \quad 1 \leq i, j \leq d ; 0 \leq t<\infty
$$

such that $\tilde{\mathbb{P}}$-a.s.

$$
\begin{gathered}
M_{t}^{i}=\sum_{j=1}^{d} \int_{0}^{t} X_{s}^{i, j} d B_{s}^{j}, \quad 1 \leq i \leq d ; 0 \leq t<\infty \\
\left\langle M^{i}, M^{j}\right\rangle_{t}=\sum_{k=1}^{d} \int_{0}^{t} X_{s}^{i, k} X_{s}^{k, j} d s \quad 1 \leq i, j \leq d ; 0 \leq t<\infty .
\end{gathered}
$$

For the proof see [5, Theorem 3.4.2].
A continuous adapted process is an Itô process provided that

$$
X(t)=x+\int_{0}^{t} \mu(s) d s+\int_{0}^{t} \sigma(s) d B(s), \quad t \geq 0
$$

where μ and σ are progressively measurable and satisfy

$$
\int_{0}^{t} \mu(s) d s<\infty, \quad \int_{0}^{t} \sigma(s)^{2} d s<\infty \text { a.s. for all } t \geq 0
$$

Theorem A. 4 (Itô's formula). If $B(t)=\left(B_{1}(t), \ldots, B_{d}(t)\right)$ is a d-dimensional $\left(\mathcal{F}_{t}\right)$ Brownian motion and

$$
X_{i}(t)=x_{i}+\int_{0}^{t} \mu_{i}(s) d s+\sum_{j=1}^{d} \int_{0}^{t} \sigma_{i j}(s) d B_{j}(s)
$$

are Itô processes, then for any C^{2} function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we have

$$
\begin{aligned}
f\left(X_{1}(t), . . X_{d}(t)\right)= & f\left(x_{1}, . ., x_{d}\right)+\sum_{i=1}^{d} \int_{0}^{t} \frac{\partial}{\partial x_{i}} f\left(X_{1}(s), . . X_{d}(s)\right) d X_{i}(s) \\
& +\frac{1}{2} \sum_{i=1}^{d} \sum_{j=1}^{d} \int_{0}^{t} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f\left(X_{1}(s), . . X_{d}(s)\right) d\left\langle X_{i}, X_{j}\right\rangle_{s}
\end{aligned}
$$

and $d\left\langle X_{i}, X_{j}\right\rangle_{s}=\sum_{k=1}^{d} \sigma_{i k} \sigma_{j k} d s$.

References

[1] H. Bauer, Measure and integration theory, Walter de Gruyter, 2001.
[2] E. Cinlar, Probability and Statistics, Springer, 2011.
[3] G. Folland, Real Analysis, 1999.
[4] S. He, J. Wang, J. Yan, Semimartingale Theory and Stochastic Calculus, Taylor \& Francis, 1992.
[5] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.
[6] https://almostsure.wordpress.com/2010/08/16/ failure-of-the-martingale-property/\#more-816

