Markov- prosessien jatkokurssi MARKOV PROCESSES

C. Geiss and S. Geiss December 8, 2021

Contents

1	Introduction	2				
2	Definition of a Markov process					
3	Transition functions					
4	Existence of Markov processes	9				
5	A reminder on stopping and optional times	13				
6	Strong Markov processes6.1Strong Markov property6.2Lévy processes are strong Markov processes	16 16 18				
7	The semi-group and infinitesimal generator approach7.1Contraction semi-groups7.2Infinitesimal generator7.3Martingales and Dynkin's formula	21 21 23 28				
8	Weak solutions of SDEs and martingale problems	31				
9	Feller processes9.1Feller semi-groups, Feller transition functions and Feller pro- cesses9.2Càdlàg modifications of Feller processes	38 38 44				
A	Appendix	51				

1 Introduction

Why should one study Markov processes? The class of Markov processes contains the

- Brownian motion,
- Lévy process,
- Feller processes,

where these classes are contained in each other, the class of Brownian motions is the smallest class. Moreover,

• solutions to certain SDEs are Markov processes.

Looking from another perspective we will see useful relations between Markov processes and

- martingale problems,
- diffusions,
- second order differential and integral operators.

The Markov processes are named after the Russian mathematician ANDREY ANDREYEVICH MARKOV (14 June 1856 – 20 July 1922).

2 Definition of a Markov process

For the following we let

- (1) $(\Omega, \mathcal{F}, \mathbb{P})$ be a complete probability space,
- (2) (E, \mathcal{E}) be a measurable space,
- (3) $\mathbf{T} \subseteq \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$ with $T \neq \emptyset$.

Let us fix some notation:

• We call $X = \{X_t; t \in \mathbf{T}\}$ a stochastic process if

$$X_t: (\Omega, \mathcal{F}) \to (E, \mathcal{E}) \text{ for all } t \in \mathbf{T}.$$

- The map $t \mapsto X_t(\omega)$ is called a path of X.
- We say that $\mathbb{F} = \{\mathcal{F}_t; t \in \mathbf{T}\}$ is a *filtration* if $\mathcal{F}_t \subseteq \mathcal{F}$ is a sub- σ -algebra for any $t \in \mathbf{T}$ and it holds $\mathcal{F}_s \subseteq \mathcal{F}_t$ for $s \leq t$.
- The process X is *adapted* to \mathbb{F} if X_t is \mathcal{F}_t measurable for all $t \in \mathbf{T}$.
- The natural filtration $\mathbb{F}^X = \{\mathcal{F}_t^X; t \in \mathbf{T}\}$ of $X = \{X_t; t \in \mathbf{T}\}$ is given by $\mathcal{F}_t^X := \sigma(X_s; s \leq t, s \in \mathbf{T}).$

Obviously, X is always adapted to its natural filtration $\mathbb{F}^X = \{\mathcal{F}_t^X; t \in \mathbf{T}\}$. Now we turn to our main definition:

Definition 2.1 (Markov process). The stochastic process X is called a *Markov process* w.r.t. \mathbb{F} if and only if

- (1) X is adapted to \mathbb{F} ,
- (2) for all $t \in \mathbf{T}$, $A \in \mathcal{F}_t$, and $B \in \sigma(X_s; s \ge t)$ one has

$$\mathbb{P}(A \cap B|X_t) = \mathbb{P}(A|X_t)\mathbb{P}(B|X_t) \text{ a.s.},$$

i.e. the σ -algebras \mathcal{F}_t and $\sigma(X_s; s \ge t, s \in \mathbf{T})$ are conditionally independent given X_t .

Remark 2.2.

(1) We recall that we define the conditional probability using conditional expectation as

$$\mathbb{P}(C|X_t) := \mathbb{P}(C|\sigma(X_t)) = \mathbb{E}[\mathbb{1}_C | \sigma(X_t)].$$

- (2) If X is a Markov process w.r.t. \mathbb{F} , then X is a Markov process w.r.t. \mathbb{F}^X .
- (3) If X is a Markov process w.r.t. its natural filtration \mathbb{F}^X , then the Markov property is preserved if one reverses the order in **T**.

The following result is our first main result:

Theorem 2.3. Let X be \mathbb{F} -adapted. Then the following conditions are equivalent:

- (1) X is a MARKOV process w.r.t. \mathbb{F} .
- (2) For each $t \in \mathbf{T}$ and each bounded $\sigma(X_s; s \ge t, s \in \mathbf{T})$ -measurable $Y : \Omega \to \mathbb{R}$ one has

$$\mathbb{E}[Y|\mathcal{F}_t] = \mathbb{E}[Y|X_t] \ a.s. \tag{2.1}$$

(3) If $s, t \in \mathbf{T}$ and $t \leq s$, then

$$\mathbb{E}[f(X_s)|\mathcal{F}_t] = \mathbb{E}[f(X_s)|X_t] \ a.s.$$

for all bounded $f : (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$

Proof. (1) \implies (2) We can decompose $Y = Y^+ - Y^-$ into the positive and negative part, and each part can be approximated from below point-wise by $\sigma(X_s; s \ge t, s \in \mathbf{T})$ -measurable simple functions. Therefore it suffices to show (2.1) for $Y = \mathbb{1}_B$ where $B \in \sigma(X_s; s \ge t, s \in \mathbf{T})$. In fact, for $A \in \mathcal{F}_t$ we have, a.s.,

$$\mathbb{E}(\mathbb{E}[Y|\mathcal{F}_t]\mathbb{1}_A) = \mathbb{E}\mathbb{1}_A\mathbb{1}_B$$

= $\mathbb{P}(A \cap B)$
= $\mathbb{E}\mathbb{P}(A \cap B|X_t)$
= $\mathbb{E}\mathbb{P}(A|X_t)\mathbb{P}(B|X_t)$

$$= \mathbb{E}\mathbb{E}[\mathbb{1}_A | X_t] \mathbb{P}(B | X_t)$$
$$= \mathbb{E}\mathbb{1}_A \mathbb{P}(B | X_t)$$
$$= \mathbb{E}(\mathbb{E}[Y | X_t] \mathbb{1}_A)$$

which implies (2).

(2) \implies (1) If $A \in \mathcal{F}_t$ and $B \in \sigma(X_s; s \ge t, s \in \mathbf{T})$, then, a.s.,

$$\mathbb{P}(A \cap B | X_t) = \mathbb{E}[\mathbb{1}_{A \cap B} | X_t]$$

= $\mathbb{E}[\mathbb{E}[\mathbb{1}_{A \cap B} | \mathcal{F}_t] | X_t]$
= $\mathbb{E}[\mathbb{1}_A \mathbb{E}[\mathbb{1}_B | \mathcal{F}_t] | X_t]$
= $\mathbb{E}[\mathbb{1}_A | X_t] \mathbb{E}[\mathbb{1}_B | X_t],$

which implies (1).

 $(2) \implies (3)$ is trivial. $(3) \implies (2)$ To apply the Monotone Class Theorem for functions we let

$$\mathcal{H} := \{Y; \quad Y \text{ is bounded and } \sigma(X_s; s \ge t, s \in \mathbf{T}) - \text{measurable} \\ \text{such that } (2.1) \text{ holds} \}.$$

Then \mathcal{H}

- is a vector space,
- contains the constants,
- is closed under bounded and monotone limits.

(a) For bounded $f_i : (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ and $t \leq s_1 < ... < s_n, n \geq 1$, we show that

$$Y = \prod_{i=1}^{n} f_i(X_{s_i}) \in \mathcal{H}.$$
(2.2)

We show (2.2) by induction over n. The case $\underline{n=1}$ is assertion (3). $\underline{n > 1}$: Assume that the statement is true for n-1. Then we get, a.s.,

$$\mathbb{E}[Y|\mathcal{F}_t] = \mathbb{E}[\mathbb{E}[Y|\mathcal{F}_{s_{n-1}}]|\mathcal{F}_t]$$

$$= \mathbb{E}[\prod_{i=1}^{n-1} f_i(X_{s_i}) \mathbb{E}[f_n(X_{s_n})|\mathcal{F}_{s_{n-1}}]|\mathcal{F}_t]$$

$$= \mathbb{E}[\prod_{i=1}^{n-1} f_i(X_{s_i}) \mathbb{E}[f_n(X_{s_n})|X_{s_{n-1}}]|\mathcal{F}_t].$$

By the Factorization Lemma A.1 there exists a $h : (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $\mathbb{E}[f_n(X_{s_n})|X_{s_{n-1}}] = h(X_{s_{n-1}})$ a.s. By the induction hypothesis we get, a.s.,

$$\mathbb{E}[\prod_{i=1}^{n-1} f_i(X_{s_i})h(X_{s_{n-1}})|\mathcal{F}_t] = \mathbb{E}[\prod_{i=1}^{n-1} f_i(X_{s_i})h(X_{s_{n-1}})|X_t].$$

And finally, by the tower property, since $\sigma(X_t) \subseteq \mathcal{F}_{s_{n-1}}$, a.s.,

$$\mathbb{E}[\Pi_{i=1}^{n-1} f_i(X_{s_i}) h(X_{s_{n-1}}) | X_t] = \mathbb{E}[\Pi_{i=1}^{n-1} f_i(X_{s_i}) \mathbb{E}[f_n(X_{s_n}) | \mathcal{F}_{s_{n-1}}] | X_t] \\
= \mathbb{E}[\mathbb{E}[\Pi_{i=1}^{n-1} f_i(X_{s_i}) f_n(X_{s_n}) | \mathcal{F}_{s_{n-1}}] | X_t] \\
= \mathbb{E}[\Pi_{i=1}^n f_i(X_{s_i}) | X_t].$$

(b) Now we apply the Monotone Class Theorem A.2. From step (a) we know that $\mathbb{1}_A \in \mathcal{H}$ for any $A \in \mathcal{A}$ with

 $\mathcal{A} = \{\{\omega \in \Omega; X_{s_1}(\omega) \in I_1, ..., X_{s_n}(\omega) \in I_n\} : I_k \in \mathcal{B}(\mathbb{R}), s_k \in \mathbf{T}, s_k \ge t, n \ge 1\}$ where $\sigma(\mathcal{A}) = \sigma(X_s; s \ge t, s \in \mathbf{T})$. Therefore

 $\{Y; Y \text{ is bounded and } \sigma(X_s; s \ge t, s \in \mathbf{T}) - \text{measurable}\} \subseteq \mathcal{H}.$

3 Transition functions

In this section we assume that $\mathbf{T} = [0, \infty)$.

Definition 3.1 (MARKOV transition function).

- (1) A family $(P_{t,s})_{0 \le t \le s < \infty}$ is called MARKOV transition function on (E, \mathcal{E}) if all $P_{s,t} : E \times \mathcal{E} \to [0, 1]$ satisfy that
 - (a) $A \mapsto P_{t,s}(x, A)$ is a probability measure on (E, \mathcal{E}) for each (t, s, x),
 - (b) $x \mapsto P_{t,s}(x, A)$ is \mathcal{E} -measurable for each (t, s, A),
 - (c) $P_{t,t}(x,A) = \delta_x(A),$
 - (d) if $0 \le t < s < u$, then the CHAPMAN-KOLMOGOROV equation

$$P_{t,u}(x,A) = \int_E P_{s,u}(y,A)P_{t,s}(x,dy)$$

holds for all $x \in E$ and $A \in \mathcal{E}$.

- (2) The MARKOV transition function $(P_{t,s})_{s \leq t}$ is homogeneous if and only if $P_{t,s} = P_{0,s-t}$ for all $0 \leq t \leq s < \infty$.
- (3) We say that a MARKOV process X w.r.t. \mathbb{F} is associated to the MARKOV transition function $(P_{t,s})_{0 \le t \le s < \infty}$ provided that

$$\mathbb{E}[f(X_s)|\mathcal{F}_t] = \int_E f(y)P_{t,s}(X_t, dy) \text{ a.s.}$$
(3.1)

for all $0 \le t \le s < \infty$ and all bounded $f : (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$

(4) Let μ be a probability measure on (E, \mathcal{E}) such that $\mu(A) = \mathbb{P}(X_0 \in A)$. Then μ is called initial distribution of X.

Remark 3.2.

- (1) There exist MARKOV processes which do not possess transition functions (see [2, Remark 1.11, page 446]).
- (2) Using monotone convergence one can check that the map

$$x \mapsto \int_E f(y) P_{t,s}(x, dy)$$

is $(\mathcal{E}, \mathcal{B}(\mathbb{R}))$ -measurable for a bounded $f : (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

Proposition 3.3. A MARKOV process w.r.t. \mathbb{F} having $(P_{t,s})_{t\leq s}$ as transition function satisfies for $0 \leq t_1 < t_2 < ... < t_n$ and bounded $f : (E^n, \mathcal{E}^{\otimes n}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ the relation

$$\mathbb{E}f(X_{t_1},...,X_{t_n}) = \int_E \mu(dx_0) \int_E P_{0,t_1}(x_0,dx_1)... \int_E P_{t_{n-1},t_n}(x_{n-1},dx_n)f(x_1,...,x_n).$$

4 Existence of Markov processes

Given a distribution μ and MARKOV transition functions $\{P_{t,s}(x, A)\}$, does there always exist a MARKOV process with initial distribution μ and transition function $\{P_{t,s}(x, A)\}$?

Definition 4.1.

(1) For a measurable space (E, \mathcal{E}) and a non-empty index set **T** we let

$$\Omega := E^{\mathbf{T}}, \quad \mathcal{F} := \mathcal{E}^{\mathbf{T}} := \sigma(X_t; t \in \mathbf{T}),$$

where $X_t: \Omega \to E$ is the coordinate map

$$X_t(\omega) = \omega(t)$$
 where $\omega = (\omega(t))_{t \in \mathbf{T}} \in \Omega$.

- (2) Let $\operatorname{Fin}(\mathbf{T}) := \{ J \subseteq \mathbf{T}; 0 < |J| < \infty \}$ where in J all elements are pairwise distinct.
- (3) For $J = \{t_1, ..., t_n\} \in \operatorname{Fin}(\mathbf{T})$ we define the projections $\pi_J : \Omega \to E^J$ by $\pi_J(\omega) := (\omega(t_1), ..., \omega(t_n)) = (X_{t_1}, ..., X_{t_n}) \in E^J.$
- (4) A set $\{\mathbf{P}_J : \mathbf{P}_J \text{ is a probability measure on } (E^J, \mathcal{E}^J), J \in \operatorname{Fin}(\mathbf{T})\}$ is called a set of *finite-dimensional distributions*.
- (5) A set of of finite-dimensional distributions $\{\mathbf{P}_J : J \in \operatorname{Fin}(\mathbf{T})\}$ is called *Kolmogorov consistent* (or compatible or projective) provided that the following holds.
 - (a) **Symmetry:** One has

$$\mathbf{P}_{t_{\sigma(1)},\dots,t_{\sigma(n)}}(A_{\sigma(1)}\times\dots\times A_{\sigma(n)}) = \mathbf{P}_{t_1,\dots,t_n}(A_1\times\dots\times A_n)$$

for any permutation $\sigma : \{1, ..., n\} \rightarrow \{1, ..., n\}$.

(b) **Projection property:** One has

$$\mathbf{P}_J = \mathbf{P}_K \circ (\pi_J \mid_{E^K})^{-1}$$

for all $J \subseteq K$ with $J, K \in Fin(\mathbf{T})$.

Theorem 4.2 (KOLMOGOROV's extension theorem, DANIELL-KOLMOGOROV Theorem). Let E be a complete, separable metric space and $\mathcal{E} = \mathcal{B}(E)$. Let **T** be a non-empty set. Suppose that for each $J \in \text{Fin}(\mathbf{T})$ there exists a probability measure P_J on (E^J, \mathcal{E}^J) and that

$$\{\mathbf{P}_J; J \in \operatorname{Fin}(\mathbf{T})\}$$

is Kolmogorov consistent. Then there exists a unique probability measure \mathbb{P} on $(E^{\mathbf{T}}, \mathcal{E}^{\mathbf{T}})$ such that

$$\mathbf{P}_J = \mathbb{P} \circ \pi_J^{-1} \quad on \quad (E^J, \mathcal{E}^J).$$

For the proof see, for example [5, Theorem 2.2 in Chapter 2]. The main result of this section is the following existence theorem that will be deduced from Theorem 4.2.

Theorem 4.3 (Existence of MARKOV processes). Let $E = \mathbb{R}^d$, $\mathcal{E} = \mathcal{B}(\mathbb{R}^d)$, and $\mathbf{T} \subseteq [0, \infty)$. Assume that μ is a probability measure on (E, \mathcal{E}) and that

$$\{P_{t,s}(x,A); 0 \le t \le s < \infty, \ x \in E, \ A \in \mathcal{E}\}$$

is a MARKOV transition function (Definition 3.1). If $J = \{t_1, ..., t_n\} \subseteq \mathbf{T}$ and $\{s_1, ..., s_n\} = \{t_1, ..., t_n\}$ with $s_1 < ... < s_n$, i.e. the t_k 's are re-arranged according to their size, we define

$$\mathbf{P}_{J}(A_{1} \times ... \times A_{n}) := \int_{E} ... \int_{E} \mathbb{1}_{A_{1} \times ... \times A_{n}}(x_{1}, ..., x_{n}) \mu(dx_{0}) P_{0,s_{1}}(x_{0}, dx_{1})$$
$$... P_{s_{n-1},s_{n}}(x_{n-1}, dx_{n}).$$
(4.1)

Then there exists a probability measure \mathbb{P} on $(E^{\mathbf{T}}, \mathcal{E}^{\mathbf{T}})$ such that the coordinate mappings, *i.e.*

$$X_t: E^{\mathbf{T}} \to \mathbb{R}^d: \omega \mapsto \omega(t),$$

form a Markov process w.r.t. \mathbb{F}^X with the MARKOV transition function $(P_{t,s})_{0 \leq t \leq s < \infty}$.

Remark 4.4. Using the monotone convergence one can show that (4.1) implies that for any bounded $f: (E^n, \mathcal{E}^n) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ it holds

$$\mathbb{E}f(X_{s_1}, ..., X_{s_n}) = \int_E ... \int_E f(x_1, ..., x_n) \mu(dx_0) P_{0,s_1}(x_0, dx_1) ... P_{s_{n-1}, s_n}(x_{n-1}, dx_n).$$
(4.2)

Proof of Theorem 4.3. (a) By construction, \mathbf{P}_J is a probability measure on (E^J, \mathcal{E}^J) . We show that the set $\{\mathbf{P}_J; J \in \operatorname{Fin}(\mathbf{T})\}$ is KOLMOGOROV consistent. The symmetry follows by construction, we only need to verify the projection property. Consider $K \subseteq J$ with

$$K = \{s_{i_1} < \dots < s_{i_k}\} \subseteq J = \{s_1 < \dots < s_n\}$$

and $1 \leq k < n$, and

$$\mathbf{P}_{J,K}: E^J \to E^K: (x_1, ..., x_n) \mapsto (x_{i_1}, ... x_{i_k}).$$

We have $\mathbf{P}_{J,K}^{-1}(B_1 \times ... \times B_k) = A_1 \times ... \times A_n$ with $A_i \in \{B_1, ..., B_k, E\}$. Let us assume, for example, that k = n - 1 and

$$A_1 \times \dots \times A_n = B_1 \times \dots \times B_{n-2} \times E \times B_n.$$

Then

$$\begin{aligned} \mathbf{P}_{J}(A_{1} \times ... \times A_{n}) \\ &= \int_{E} ... \int_{E} \mathbb{1}_{B_{1} \times ... \times B_{n-2} \times E \times B_{n}}(x_{1}, ..., x_{n}) \\ &\qquad \mu(dx_{0}) P_{0,s_{1}}(x_{0}, dx_{1}) ... P_{s_{n-1},s_{n}}(x_{n-1}, dx_{n}) \\ &= \mathbf{P}_{\{s_{1}, ..., s_{n-2}, s_{n}\}}(B_{1} \times ... \times B_{n-2} \times B_{n}) \end{aligned}$$

since, by the CHAPMAN-KOLMOGOROV equation, we have

$$\int_{E} P_{s_{n-2},s_{n-1}}(x_{n-2},dx_{n-1})P_{s_{n-1},s_n}(x_{n-1},dx_n) = P_{s_{n-2},s_n}(x_{n-2},dx_n).$$

(b) Now we check that the process is a MARKOV process. According to Definition 2.1 we need to show that

$$\mathbb{P}(A \cap B | X_t) = \mathbb{P}(A | X_t) \mathbb{P}(B | X_t) \text{ a.s.}$$
(4.3)

for $A \in \mathcal{F}_t^X = \sigma(X_u; u \leq t)$ and $B \in \sigma(X_s; s \geq t)$. We only prove the special case

$$\mathbb{P}(X_u \in B_1, X_s \in B_3, | X_t) = \mathbb{P}(X_u \in B_1 | X_t) \mathbb{P}(X_s \in B_3 | X_t) \text{ a.s.}$$

for u < t < s and $B_i \in \mathcal{E}$. For this we show that it holds

$$\mathbb{E}\left[\mathbb{1}_{B_1}(X_u)\mathbb{1}_{B_3}(X_s)\mathbb{1}_{B_2}(X_t)\right] = \mathbb{E}\left[\mathbb{P}(X_u \in B_1 | X_t)\mathbb{P}(X_s \in B_3 | X_t)\mathbb{1}_{B_2}(X_t)\right].$$

Indeed, by (4.1),

$$\mathbb{E}\mathbb{1}_{B_1}(X_u)\mathbb{1}_{B_3}(X_s)\mathbb{1}_{B_2}(X_t) = \int_E \int_E \int_E \int_E \int_E \mathbb{1}_{B_1 \times B_2 \times B_3}(x_1, x_2, x_3)$$
$$\mu(dx_0)P_{0,u}(x_0, dx_1)P_{u,t}(x_1, dx_2)P_{t,s}(x_2, dx_3).$$

Using the tower property we get

$$\mathbb{E} \left[\mathbb{P}(X_s \in B_3 | X_t) \mathbb{P}(X_u \in B_1 | X_t) \mathbb{1}_{B_2}(X_t) \right] \\= \mathbb{E} \left[(\mathbb{E} [\mathbb{1}_{B_3}(X_s) | X_t]) \mathbb{1}_{B_1}(X_u) \mathbb{1}_{B_2}(X_t) \right] \\= \mathbb{E} \left[P_{t,s}(X_t, B_3) \mathbb{1}_{B_1}(X_u) \mathbb{1}_{B_2}(X_t) \right].$$

To see that $\mathbb{E}[\mathbb{1}_{B_3}(X_s)|X_t]) = P_{t,s}(X_t, B_3)$ we write

$$\mathbb{E}\mathbb{1}_{B_3}(X_s)\mathbb{1}_B(X_t) = \int_E \int_E \int_E \mathbb{1}_{B_3}(x_2)\mathbb{1}_B(x_1)\mu(dx_0)P_{0,t}(x_0, dx_1)P_{t,s}(x_1, dx_2)$$

$$= \int_E \int_E \int_E \mathbb{1}_B(x_1)\mu(dx_0)P_{0,t}(x_0, dx_1)P_{t,s}(x_1, B_3)$$

$$= \mathbb{E}P_{t,s}(X_t, B_3)\mathbb{1}_B(X_t).$$

where we used (4.2) for $f(x_1) = \mathbb{1}_B(x_1)P_{t,s}(x_1, B_3)$. Again by (4.2), now for $f(X_u, X_t) := P_{t,s}(X_t, B_3)\mathbb{1}_{B_1}(X_u)\mathbb{1}_{B_2}(X_t)$, we get that

5 A reminder on stopping and optional times

For (Ω, \mathcal{F}) we assume a filtration $\mathbb{F} = \{\mathcal{F}_t; t \in \mathbf{T}\}$ where $\mathbf{T} = [0, \infty) \cup \{\infty\}$ and $\mathcal{F} = \mathcal{F}_{\infty} = \sigma \left(\bigcup_{s \in [0,\infty)} \mathcal{F}_s\right)$. Moreover, we set

$$\mathcal{F}_{t+} := \bigcap_{s>t} \mathcal{F}_s, \quad t \in [0,\infty), \qquad \qquad \mathcal{F}_{\infty+} := \mathcal{F}_{\infty},$$
$$\mathcal{F}_{t-} := \sigma \left(\bigcup_{0 \le s < t} \mathcal{F}_s\right), \quad t \in (0,\infty], \quad \mathcal{F}_{0-} := \mathcal{F}_0.$$

Therefore, for all $t \in \mathbf{T}$ one has that

$$\mathcal{F}_{t-} \subseteq \mathcal{F}_t \subseteq \mathcal{F}_{t+}.$$

Definition 5.1.

(1) A map $\tau: \Omega \to \mathbf{T}$ is called a *stopping time w.r.t.* \mathbb{F} provided that

 $\{\tau \leq t\} \in \mathcal{F}_t \text{ for all } t \in [0,\infty).$

(2) The map $\tau: \Omega \to \mathbf{T}$ is called an *optional time w.r.t* \mathbb{F} provided that

$$\{\tau < t\} \in \mathcal{F}_t \text{ for all } t \in [0, \infty).$$

(3) For a stopping time $\tau : \Omega \to \mathbf{T}$ w.r.t. \mathbb{F} we define

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \quad \forall t \in [0, \infty) \}.$$

(4) For an optional time $\tau : \Omega \to \mathbf{T}$ w.r.t. \mathbb{F} we define

$$\mathcal{F}_{\tau+} := \{ A \in \mathcal{F} : A \cap \{ \tau < t \} \in \mathcal{F}_t \quad \forall t \in [0, \infty) \}.$$

Remark 5.2.

(1) For a stopping time we have that $\{\tau = \infty\} = \{\tau < \infty\}^c \in \mathcal{F}_{\infty}$ because

$$\{\tau < \infty\} = \bigcup_{n \in \mathbb{N}} \{\tau \le n\} \in \mathcal{F}_{\infty}.$$

- (2) For an optional time we have that $\{\tau < \infty\} \in \mathcal{F}_{\infty}$.
- (3) \mathcal{F}_{τ} and $\mathcal{F}_{\tau+}$ are σ algebras.

Definition 5.3. The filtration $\{\mathcal{F}_t; t \in \mathbf{T}\}$ is called *right-continuous* if $\mathcal{F}_t = \mathcal{F}_{t+}$ for all $t \in [0, \infty)$.

Lemma 5.4. If τ and σ are stopping times w.r.t. \mathbb{F} , then

- (1) $\tau + \sigma$,
- (2) $\tau \wedge \sigma = \min\{\tau, \sigma\},\$
- (3) $\tau \lor \sigma = \max\{\tau, \sigma\},\$
- are stopping times w.r.t. \mathbb{F} .

Lemma 5.5.

- (1) For $t_0 \in \mathbf{T}$ the map $\tau(\omega) \equiv t_0$ for all $\omega \in \Omega$ is a stopping time and one has $\mathcal{F}_{t_0} = \mathcal{F}_{\tau}$.
- (2) Every stopping time is an optional time.
- (3) If $\{\mathcal{F}_t; t \in \mathbf{T}\}$ is right-continuous, then every optional time is a stopping time.
- (4) The map τ is an $\{\mathcal{F}_t; t \in \mathbf{T}\}$ optional time if and only if τ is an $\{\mathcal{F}_{t+}; t \in \mathbf{T}\}$ stopping time.

Proof. (1) follows from

$$\{\tau \le t\} = \begin{cases} \Omega; & t_0 \le t \\ \emptyset; & t_0 > t \end{cases}$$

(2) Let τ be a stopping time. Then

$$\{\tau < t\} = \bigcup_{n=1}^{\infty} \underbrace{\left\{\tau \le t - \frac{1}{n}\right\}}_{\in \mathcal{F}_{t-\frac{1}{n}} \subseteq \mathcal{F}_{t}} \in \mathcal{F}_{t}.$$

(3) We have that $\{\tau \leq t\} = \bigcap_{n=1}^{\infty} \underbrace{\left\{\tau < t + \frac{1}{n}\right\}}_{\in \mathcal{F}_{t+\frac{1}{n}}}$. Because of

$$\bigcap_{n=1}^{M} \left\{ \tau < t + \frac{1}{n} \right\} = \left\{ \tau < t + \frac{1}{M} \right\} \in \mathcal{F}_{t + \frac{1}{M}}$$

we get that $\{\tau \leq t\} \in \mathcal{F}_{t+\frac{1}{M}} \quad \forall M \in \mathbb{N}^* \text{ and hence } \{\tau \leq t\} \in \mathcal{F}_{t+} = \mathcal{F}_t \text{ since } \{\mathcal{F}_t; t \in \mathbf{T}\} \text{ is right-continuous.}$

(4) \implies If τ is an $\{\mathcal{F}_t; t \in \mathbf{T}\}$ optional time, then $\{\tau < t\} \in \mathcal{F}_t$ implies $\{\tau < t\} \in \mathcal{F}_{t+}$ because $\mathcal{F}_t \subseteq \bigcap_{s>t} \mathcal{F}_s = \mathcal{F}_{t+}$. This means that τ is an $\{\mathcal{F}_{t+}; t \in \mathbf{T}\}$ optional time. Since $\{\mathcal{F}_{t+}; t \in \mathbf{T}\}$ is right-continuous, we conclude from (3) that τ is an $\{\mathcal{F}_{t+}; t \in \mathbf{T}\}$ stopping time.

 \Leftarrow If τ is an $\{\mathcal{F}_{t+}; t \in \mathbf{T}\}$ stopping time, then

$$\{\tau < t\} = \bigcup_{n=1}^{\infty} \underbrace{\{\tau \le t - \frac{1}{n}\}}_{\in \mathcal{F}_{(t-1/n)^+} = \bigcap_{s > t-1/n} \mathcal{F}_s \subseteq \mathcal{F}_t} \in \mathcal{F}_t.$$

Lemma 5.6. For stopping times $\sigma, \tau, \tau_1, \tau_2, \dots$ w.r.t. \mathbb{F} the following holds:

- (1) τ is \mathcal{F}_{τ} -measurable.
- (2) If $\tau \leq \sigma$, then $\mathcal{F}_{\tau} \subseteq \mathcal{F}_{\sigma}$.
- (3) $\mathcal{F}_{\tau+} = \{ A \in \mathcal{F} : A \cap \{ \tau \le t \} \in \mathcal{F}_{t+} \quad \forall t \in [0, \infty) \}.$
- (4) The map $\sup_n \tau_n : \Omega \to \mathbf{T}$ is a stopping time w.r.t. \mathbb{F} .

6 Strong Markov processes

6.1 Strong Markov property

Definition 6.1 (progressively measurable). Let *E* be a complete, separable metric space and $\mathcal{E} = \mathcal{B}(E)$.

(1) A process $X = \{X_t; t \in [0, \infty)\}$, with $X_t : \Omega \to E$ is called \mathbb{F} -progressively measurable if for all $t \ge 0$ it holds

$$X: ([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \to (E, \mathcal{E}).$$

(2) We will say that a stochastic process X is right-continuous (left-continuous), if for all $\omega \in \Omega$ the functions

$$[0,\infty) \ni t \mapsto X_t(\omega) \in E$$

are right-continuous (left-continuous).

We will start with a technical lemma:

Lemma 6.2.

- (1) If X is \mathbb{F} -progressively measurable, then X is \mathbb{F} -adapted,
- (2) If X is \mathbb{F} -adapted and right-continuous (or left-continuous), then X is \mathbb{F} -progressively measurable.
- (3) If τ is an \mathbb{F} -stopping time and X is \mathbb{F} progressively measurable, then $X_{\tau}: \{\tau < \infty\} \to E$ is $\mathcal{F}_{\tau}|_{\{\tau < \infty\}}$ -measurable.
- (4) For an F-stopping time τ and a F- progressively measurable process X the stopped process X^τ given by

$$X_t^\tau(\omega) := X_{t \wedge \tau}(\omega)$$

is \mathbb{F} - progressively measurable,

(5) If τ is an \mathbb{F} -optional time and X is \mathbb{F} - progressively measurable, then $X_{\tau}: \{\tau < \infty\} \to E$ is $\mathcal{F}_{\tau+}|_{\{\tau < \infty\}}$ -measurable.

Proof. The assertions (1), (2) and (5) are exercises. (3) For $s \in [0, \infty)$ it holds

$$\{\tau \wedge t \leq s\} = \{\tau \leq s\} \cup \{t \leq s\} = \begin{cases} \Omega, & s \geq t \\ \{\tau \leq s\}, & s < t \end{cases} \in \mathcal{F}_t.$$

Hence $\tau \wedge t$ is \mathcal{F}_t -measurable. Next we observe that $h(\omega) := (\tau(\omega) \wedge t, \omega)$ is measurable as map

$$(\Omega, \mathcal{F}_t) \to ([0, t] \times \Omega, \mathcal{B}([0, t]) \otimes \mathcal{F}_t).$$

Also, since X is \mathbb{F} - progressively measurable, we have that

$$X: ([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \to (E,\mathcal{E})$$
(6.1)

and therefore

$$X \circ h : (\Omega, \mathcal{F}_t) \to (E, \mathcal{E}). \tag{6.2}$$

It holds that (3) is equivalent to

$$\{X_{\tau} \in B\} \cap \{\tau \le t\} \in \mathcal{F}_t \text{ for all } t \in [0,\infty).$$

Indeed this is true as

$$\{X_{\tau} \in B\} \cap \{\tau \le t\} = \{X_{\tau \land t} \in B\} \cap \{\tau \le t\}$$

which is in \mathcal{F}_t because of (6.2) and since τ is a stopping time.

(4) It holds that the map $H(s,\omega) := (\tau(\omega) \wedge s, \omega)$ is measurable as map

$$([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \to ([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t)$$

for $t \ge 0$ since, for $r \in [0, t]$,

$$\{(s,\omega)\in[0,t]\times\Omega:\tau(\omega)\wedge s\in[0,r]\}=([0,r]\times\Omega)\cup((r,t]\times\{\tau\leq r\}).$$

Because of (6.1) we have for the composition $(X \circ H)(s, \omega) := X_{\tau(\omega) \wedge s}(\omega) = X_s^{\tau}(\omega)$ the measurability

$$X \circ H : ([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \to (E, \mathcal{E}).$$

		L
		L
		L
		L
		Ł

Definition 6.3 (strong MARKOV process). Assume that $\{X_t : t \ge 0\}$ is an \mathbb{F} -progressively measurable MARKOV process with homogeneous transition function $(P_t)_{t\ge 0}$ in the sense that $P_t = P_{0,t}$. The process X is called a *strong Markov process* if

$$\mathbb{P}(X_{\tau+t} \in A | \mathcal{F}_{\tau+}) = P_t(X_{\tau}, A) \text{ a.s.}$$

for all $t \ge 0$, $A \in \mathcal{E}$ and all \mathbb{F} -optional times $\tau : \Omega \to [0, \infty)$.

One can formulate the strong Markov property without transition functions:

Proposition 6.4. Let X be an \mathbb{F} -progressively measurable process. Then, provided X is a Markov process with transition function, the following assertions are equivalent to Definition 6.3:

(1) For all For all $t \in \mathbf{T}$ and $A \in \mathcal{E}$ one has

$$\mathbb{P}(X_{\tau+t} \in A | \mathcal{F}_{\tau+}) = \mathbb{P}(X_{\tau+t} \in A | X_{\tau}) \ a.s.$$

for all \mathbb{F} -optional times $\tau : \Omega \to [0, \infty)$.

(2) For all $t_1, ..., t_n \in \mathbf{T}$ and $A_1, ..., A_n \in \mathcal{E}$ one has

 $\mathbb{P}(X_{\tau+t_1} \in A_1, ..., X_{\tau+t_n} \in A_n | \mathcal{F}_{\tau+}) = \mathbb{P}(X_{\tau+t_1} \in A_1, ..., X_{\tau+t_n} \in A_n | X_{\tau}) \ a.s.$

for all \mathbb{F} -optional times $\tau : \Omega \to [0, \infty)$.

6.2 Lévy processes are strong Markov processes

Definition 6.5. A process $X = \{X_t : t \ge 0\}$ is called LÉVY process if the following holds:

- (1) $X_0 \equiv 0.$
- (2) The paths of X are càdlàg (i.e. they are right-continuous and have left limits).
- (3) For all $0 \le s \le t < \infty$ one has $X_t X_s \stackrel{d}{=} X_{t-s}$.
- (4) For all $0 \le s \le t < \infty$ one has that $X_t X_s$ is independent of \mathcal{F}_s^X .

The strong MARKOV property of a LÉVY process will be obtained as follows:

Theorem 6.6. Let X be a Lévy process. Assume that $\tau : \Omega \to [0, \infty)$ is an \mathbb{F}^X -optional time. Define the process $\tilde{X} = {\tilde{X}_t; t \ge 0}$ by

$$\tilde{X}_t = (X_{t+\tau} - X_\tau), \quad t \ge 0.$$

Then the process \tilde{X} is independent of $\mathcal{F}_{\tau+}^X$ and \tilde{X} has the same distribution as X.

Proof. The finite dimensional distributions determine the law of a stochastic process. Hence it is sufficient to show for arbitrary $0 = t_0 < t_1 < ... < t_m < \infty$ that

$$\tilde{X}_{t_m} - \tilde{X}_{t_{m-1}}, ..., \tilde{X}_{t_1} - \tilde{X}_{t_0}$$
 and $\mathcal{F}_{\tau+}$ are independent.

Let $G \in \mathcal{F}_{\tau+}$. We define a sequence of random times

$$\tau^{(n)} = \sum_{k=1}^{\infty} \frac{k}{2^n} \mathbb{1}_{\{\frac{k-1}{2^n} \le \tau < \frac{k}{2^n}\}}.$$

We have that $\tau^{(n)} < \infty$. Then for $\theta_1, ..., \theta_m \in \mathbb{R}$, using tower property,

$$\begin{split} & \mathbb{E} \exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{\tau^{(n)}+t_{l}} - X_{\tau^{(n)}+t_{l-1}}) \right\} \mathbb{1}_{G} \\ &= \sum_{k=1}^{\infty} \mathbb{E} \exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{\tau^{(n)}+t_{l}} - X_{\tau^{(n)}+t_{l-1}}) \right\} \mathbb{1}_{G \cap \{\tau^{(n)} = \frac{k}{2^{n}}\}} \\ &= \sum_{k=1}^{\infty} \mathbb{E} \exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{\frac{k}{2^{n}}+t_{l}} - X_{\frac{k}{2^{n}}+t_{l-1}}) \right\} \mathbb{1}_{G \cap \{\tau^{(n)} = \frac{k}{2^{n}}\}} \\ &= \sum_{k=1}^{\infty} \mathbb{E} \mathbb{1}_{G \cap \{\tau^{(n)} = \frac{k}{2^{n}}\}} \mathbb{E} \left[\exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{\frac{k}{2^{n}}+t_{l}} - X_{\frac{k}{2^{n}}+t_{l-1}}) \right\} \middle| \mathcal{F}_{\frac{k}{2^{n}}} \right] \\ &= \sum_{k=1}^{\infty} \mathbb{E} \mathbb{1}_{G \cap \{\tau^{(n)} = \frac{k}{2^{n}}\}} \mathbb{E} \exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{\frac{k}{2^{n}}+t_{l}} - X_{\frac{k}{2^{n}}+t_{l-1}}) \right\} \\ &= \sum_{k=1}^{\infty} \mathbb{E} \mathbb{1}_{G \cap \{\tau^{(n)} = \frac{k}{2^{n}}\}} \mathbb{E} \exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{t_{l}} - X_{t_{l-1}}) \right\} \\ &= \mathbb{P}(G) \mathbb{E} \exp\left\{ i \sum_{l=1}^{m} \theta_{l} (X_{t_{l}} - X_{t_{l-1}}) \right\} \end{split}$$

since $G \cap \{\tau^{(n)} = \frac{k}{2^n}\} = G \cap \{\frac{k-1}{2^n} \le \tau < \frac{k}{2^n}\} \in \mathcal{F}_{\frac{k}{2^n}}$. Because we have $\tau^{(n)}(\omega) \downarrow \tau(\omega)$ and X is right-continuous, we get

$$\lim_{n \to \infty} X_{\tau^{(n)}(\omega)+s} = X_{\tau(\omega)+s}$$

for all $s \ge 0$ and

$$\mathbb{E}\exp\left\{i\sum_{l=1}^{m}\theta_{l}(X_{\tau+t_{l}}-X_{\tau+t_{l-1}})\right\}\mathbb{1}_{G}=\mathbb{P}(G)\mathbb{E}\exp\left\{i\sum_{l=1}^{m}\theta_{l}(X_{t_{l}}-X_{t_{l-1}})\right\}$$

by dominated convergence. Specialising to $\Omega = G$ yields to

$$\mathbb{E} \exp\left\{i\sum_{l=1}^{m} \theta_l (X_{\tau+t_l} - X_{\tau+t_{l-1}})\right\} = \mathbb{E} \exp\left\{i\sum_{l=1}^{m} \theta_l (X_{t_l} - X_{t_{l-1}})\right\},\$$

which implies that X and \tilde{X} have the same finite-dimensional distributions. In turn, this also gives

$$\mathbb{E} \exp\left\{i\sum_{l=1}^{m} \theta_{l}(X_{\tau+t_{l}} - X_{\tau+t_{l-1}})\right\} \mathbb{1}_{G} = \mathbb{P}(G)\mathbb{E} \exp\left\{i\sum_{l=1}^{m} \theta_{l}(X_{\tau+t_{l}} - X_{\tau+t_{l-1}})\right\}.$$

which means that \tilde{X} is independent from $\mathcal{F}_{\tau+}^X$.

Theorem 6.7. A LÉVY process is a strong MARKOV process.

Proof. Assume that $\tau : \Omega \to [0, \infty)$ is an \mathbb{F}^X -optional time. Since by Lemma 6.2 we have that X_{τ} is $\mathcal{F}_{\tau+}^X$ measurable and from Theorem 6.6 we have that $X_{t+\tau} - X_{\tau}$ is independent from $\mathcal{F}_{\tau+}^X$, we get that for any $A \in \mathcal{E}$ it holds, a.s.,

$$\mathbb{P}(X_{\tau+t} \in A | \mathcal{F}_{\tau+}) = \mathbb{E}[\mathbb{1}_{\{X_{t+\tau} - X_{\tau}\} + X_{\tau} \in A\}} | \mathcal{F}_{\tau+}]$$
$$= (\mathbb{E}\mathbb{1}_{\{X_{t+\tau} - X_{\tau}\} + y \in A\}} |_{y=X_{\tau}}$$

The assertion from Theorem 6.6 that $X_{t+\tau} - X_{\tau} \stackrel{d}{=} X_t$ allows us to write

$$\mathbb{E}\mathbb{1}_{\{(X_{t+\tau}-X_{\tau})+y\in A\}} = \mathbb{E}\mathbb{1}_{\{X_t+y\in A\}} = P_t(y,A).$$

Consequently, we have shown that

$$\mathbb{P}(X_{\tau+t} \in A | \mathcal{F}_{\tau+}) = P_t(X_{\tau}, A) \text{ a.s.}$$

7 The semi-group and infinitesimal generator approach

7.1 Contraction semi-groups

Definition 7.1 (semi-group).

- (1) Let \mathcal{B} be a real Banach space with norm $\|\cdot\|$. A one-parameter family $\{T(t); t \geq 0\}$ of bounded linear operators $T(t) : \mathcal{B} \to \mathcal{B}$ is called a *semi-group* if
 - (a) T(0) = Id,
 - (b) T(s+t) = T(s)T(t) for all $s, t \ge 0$.
- (2) A semi-group $\{T(t); t \ge 0\}$ is called *strongly continuous* (or C_0 semigroup) if, for all $f \in \mathcal{B}$,

$$\lim_{t \downarrow 0} T(t)f = f.$$

(3) The semi-group $\{T(t); t \ge 0\}$ is a contraction semi-group if, for all $t \ge 0$,

$$||T(t)|| = \sup_{||f||=1} ||T(t)f|| \le 1.$$

Example 7.2. Let $\mathcal{B} := \mathbb{R}^d$ and let A be a $d \times d$ matrix. For $t \ge 0$ define

$$T(t) := e^{tA} := \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k$$

with A^0 being the identity matrix. As norm we take the operator norm of A, i.e.

$$||A|| := \sup\{|Ax| : |x| \le 1\},\$$

where $|(x_1, ..., d)| := (x_1^2 + \dots + x_d^2)^{\frac{1}{2}}$. Then one has that

- (1) $e^{(s+t)A} = e^{sA}e^{tA}$ for all $s, t \ge 0$,
- (2) $\{e^{tA}; t \ge 0\}$ is strongly continuous, and
- (3) $||e^{tA}|| \le e^{t||A||}$ for $t \ge 0$.

Definition 7.3. Let E be a complete separable metric space and let $\mathcal{B}(E)$ be the BOREL- σ -algebra generated by the open sets of E. By \mathcal{B}_E we denote the space of bounded measurable functions

$$f: (E, \mathcal{B}(E)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

and equip this space with the norm $||f|| := \sup_{x \in E} |f(x)|$.

Theorem 7.4. Let E be a complete separable metric space and X be a homogeneous Markov process with transition function $\{P_t(x, A)\}$. Then the following is true:

- (1) The space \mathfrak{B}_E defined in Definition 7.3 is a Banach space.
- (2) The family of operators $\{T(t); t \ge 0\}$ with

$$T(t)f(x) := \int_E f(y)P_t(x,dy), \quad f \in \mathcal{B}_E,$$

is a contraction semi-group.

Proof. (1) We realise that \mathcal{B}_E is indeed a Banach space:

- Measurable and bounded functions form a vector space.
- $||f|| := \sup_{x \in E} |f(x)|$ is a norm.
- \mathcal{B}_E is complete w.r.t. this norm.
- (2) We show that $T(t): \mathcal{B}_E \to \mathcal{B}_E$: To verify that

$$T(t)f: (E, \mathcal{B}(E)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$$

we can restrict ourself to $f \ge 0$ and find simple (measurable!) functions $f_n = \sum_{k=1}^{N_n} a_k^n \mathbb{1}_{A_k^n}, A_k^n \in \mathcal{B}(E), a_k^n \ge 0$ such that $f_n \uparrow f$. Then

$$T(t)f_n(x) = \int_E \sum_{k=1}^{N_n} a_k^n \mathbb{1}_{A_k^n}(y) P_t(x, dy)$$
$$= \sum_{k=1}^{N_n} a_k^n \int_E \mathbb{1}_{A_k^n}(y) P_t(x, dy)$$

$$= \sum_{k=1}^{N_n} a_k^n P_t(x, A_k^n).$$

Since

$$P_t(\cdot, A_k^n) : (E, \mathcal{B}(E)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})),$$

we have this measurability for $T(t)f_n$, and by dominated convergence also for T(t)f. Moreover, we have

$$\|T(t)f\| = \sup_{x \in E} |T(t)f(x)| \\ \leq \sup_{x \in E} \int_{E} |f(y)| P_t(x, dy) \\ \leq \sup_{x \in E} \|f\| P_t(x, E) = \|f\|.$$
(7.1)

Hence $T(t)f \in \mathcal{B}_E$.

(c) $\{T(t); t \ge 0\}$ is a semi-group: We first observe that

$$T(0)f(x) = \int_{E} f(y)P_{0}(x, dy) = \int_{E} f(y)\delta_{x}(dy) = f(x)$$

which implies that T(0) = Id. From the CHAPMAN-KOLMOGOROV equation we derive

$$\begin{split} T(s)T(t)f(x) &= T(s)(T(t)f)(x) \\ &= T(s)\left(\int_E f(y)P_t(\cdot,dy)\right)(x) \\ &= \int_E \int_E f(y)P_t(z,dy)P_s(x,dz) \\ &= \int_E f(y)P_{t+s}(x,dy) = T(t+s)f(x). \end{split}$$

(d) We have already seen in (7.1) that $\{T(t); t \ge 0\}$ is a contraction. \Box

7.2 Infinitesimal generator

Definition 7.5 (infinitesimal generator). Let $\{T(t); t \ge 0\}$ be a contraction semi-group on \mathcal{B}_E . Define D(A) to be the set of all $f \in \mathcal{B}_E$ such that there

exists a $g \in \mathcal{B}_E$ such that

$$\lim_{t \downarrow 0} \left\| \frac{T(t)f - f}{t} - g \right\| = 0 \tag{7.2}$$

and

$$A: D(A) \to \mathcal{B}_E$$
 by $Af := \lim_{t \downarrow 0} \frac{T(t)f - f}{t}$.

The operator A is called *infinitesimal generator* of $\{T(t); t \ge 0\}$ and D(A) the *domain* of A.

Example 7.6. If $W = (W_t)_{t \ge 0}$ is the one-dimensional Brownian motion and

 $C^2_u(\mathbb{R}) := \{ f : \mathbb{R} \to \mathbb{R} : \text{ twice continuously differentiable and} \\ f'' \text{ is uniformly continuous and bounded} \},$

then $C_u^2(\mathbb{R}) \subseteq D(A)$ and for $f \in C_u^2(\mathbb{R})$ we have that $Af = \frac{1}{2} \frac{d^2}{dx^2} f$. *Proof.* We have $P_t(x, A) = \mathbb{P}(x + W_t \in A)$ and

$$T(t)f(x) = \mathbb{E}f(x + W_t).$$

By ITÔ's formula,

$$f(x+W_t) = f(x) + \int_0^t f'(x+W_s) dW_s + \frac{1}{2} \int_0^t f''(x+W_s) ds.$$

Since f' is bounded, we have $\mathbb{E} \int_0^t (f'(x+W_s))^2 ds < \infty$ and therefore

$$\mathbb{E}\int_0^t f'(x+W_s)dW_s = 0.$$

For t > 0 this implies

$$\lim_{t \downarrow 0} \frac{\mathbb{E}f(x+W_t) - f(x)}{t} = \frac{1}{2} \lim_{t \downarrow 0} \mathbb{E}\frac{1}{t} \int_0^t f''(x+W_s) ds$$
$$= \frac{1}{2} \mathbb{E}\lim_{t \downarrow 0} \frac{1}{t} \int_0^t f''(x+W_s) ds$$

$$=\frac{1}{2}f''(x)$$

where we use dominated convergence as

$$\left|\frac{1}{t}\int_0^t f''(x+W_s)ds\right| \le \sup_y |f''(y)| < \infty$$

and the continuity of the paths $s \mapsto W_s(\omega)$. It remains to estimate uniformly in x the expression

$$\left|\frac{1}{2}\frac{1}{t}\mathbb{E}\int_0^t f''(x+W_s)ds - \frac{1}{2}f''(x)\right|.$$

Given $\varepsilon > 0$ we find an $\eta > 0$ such that $|x - y| < \eta$ implies that $|f''(x) - f''(y)| < \varepsilon$. Then

$$\begin{aligned} \left| \frac{1}{t} \mathbb{E} \int_0^t f''(x+W_s) ds - f''(x) \right| \\ &\leq \left| \mathbb{E} \mathbb{1}_{\{\sup_{s \in [0,t]} |W_s| < \eta\}} \left[\frac{1}{t} \int_0^t f''(x+W_s) ds - f''(x) \right] \right| \\ &+ 2 \mathbb{P}(\sup_{s \in [0,t]} |W_s| \ge \eta) \sup_x |f''(x)| \\ &\leq \varepsilon + \frac{2}{\eta^2} \mathbb{E} \sup_{s \in [0,t]} |W_s|^2 \sup_x |f''(x)| \\ &\leq \varepsilon + \frac{8}{\eta^2} \mathbb{E} |W_t|^2 \sup_x |f''(x)| \\ &\leq \varepsilon + \frac{8t}{\eta^2} \sup_x |f''(x)| \end{aligned}$$

where we applied DOOB's maximal inequality. Therefore, given $\varepsilon > 0$, we can take $t_0 > 0$ small enough such that, for $t \in (0, t_0]$, we have

$$\varepsilon + \frac{4t}{\eta^2} \sup_x |f''(x)| \le 2\varepsilon.$$

Theorem 7.7. Let $\{T(t); t \ge 0\}$ be a contraction semi-group and A its infinitesimal generator with domain D(A). Then

(1) If $f \in \mathcal{B}_E$ is such that $\lim_{t\downarrow 0} T(t)f = f$, then for $t \ge 0$ it holds

$$\int_0^t T(s)fds \in D(A) \quad and \quad A\left(\int_0^t T(s)fds\right) = T(t)f - f.$$

(2) If $f \in D(A)$ and $t \ge 0$, then $T(t)f \in D(A)$ and

$$\lim_{s \downarrow 0} \frac{T(t+s)f - T(t)f}{s} = AT(t)f = T(t)Af.$$

(3) If $f \in D(A)$ and $t \ge 0$, then $\int_0^t T(s) f ds \in D(A)$ and

$$T(t)f - f = A \int_0^t T(s)fds = \int_0^t AT(s)fds = \int_0^t T(s)Afds$$

Proof. (1) If $\lim_{t\downarrow 0} T(t)f = f$, then

$$\lim_{s \downarrow u} T(s)f = \lim_{t \downarrow 0} T(u+t)f = \lim_{t \downarrow 0} T(u)T(t)f = T(u)\lim_{t \downarrow 0} T(t)f = T(u)f,$$

where we used the continuity of $T(u) : \mathcal{B}_E \to \mathcal{B}_E$. This continuity from the right also implies that the Riemann integral

$$\int_0^t T(s+u)fdu$$

exists for all $t, s \ge 0$ if we use in the discretizations the right-hand end point: for example if we set $t_i^n := \frac{t_i}{n}$, then

$$\sum_{i=1}^n T(t_i^n) f(t_i^n - t_{i-1}^n) \to \int_0^t T(u) f du, \quad n \to \infty,$$

and therefore

$$T(s) \int_0^t T(u) f du = T(s) \left(\int_0^t T(u) f du - \sum_{i=1}^n T(t_i^n) f(t_i^n - t_{i-1}^n) \right) + \sum_{i=1}^n T(s) T(t_i^n) f(t_i^n - t_{i-1}^n)$$

$$\rightarrow \int_0^t T(s+u)fdu.$$

This implies

$$\begin{aligned} \frac{T(s)-I}{s} \int_0^t T(u)fdu &= \frac{1}{s} \left(\int_0^t T(s+u)fdu - \int_0^t T(u)fdu \right) \\ &= \frac{1}{s} \left(\int_s^{t+s} T(u)fdu - \int_0^t T(u)fdu \right) \\ &= \frac{1}{s} \left(\int_t^{t+s} T(u)fdu - \int_0^s T(u)fdu \right) \\ &\to T(t)f - f, \quad s \downarrow 0. \end{aligned}$$

Since the RHS converges to $T(t)f - f \in \mathcal{B}_E$ we get $\int_0^t T(u)f du \in D(A)$ and

$$A\int_0^t T(u)fdu = T(t)f - f.$$

(2) If $f \in D(A)$, then

$$\frac{T(s)T(t)f - T(t)f}{s} = \frac{T(t)(T(s)f - f)}{s} \to T(t)Af, \quad s \downarrow 0.$$

Hence $T(t)f \in D(A)$ and AT(t)f = T(t)Af.

(3) If $f \in D(A)$, then $\frac{T(s)f-f}{s} \to Af$ and therefore $T(s)f - f \to 0$ for $s \downarrow 0$. Then, by (1), we get $\int_0^t T(u)fdu \in D(A)$. From (2) we get by integrating

$$\int_{0}^{t} \lim_{s \downarrow 0} \frac{T(s+u)f - T(u)f}{s} du = \int_{0}^{t} AT(u)f du = \int_{0}^{t} T(u)Af du.$$

On the other hand, in the proof of (1) we have shown that

$$\int_{0}^{t} \frac{T(s+u)f - T(u)f}{s} du = \frac{T(s) - I}{s} \int_{0}^{t} T(u)f du.$$

Since $\frac{T(s+u)f-T(u)f}{s}$ converges in \mathcal{B}_E we may interchange limit and integral:

$$\int_0^t \lim_{s \downarrow 0} \frac{T(s+u)f - T(u)f}{s} du = \lim_{s \downarrow 0} \frac{T(s) - I}{s} \int_0^t T(u)f du$$
$$= A \int_0^t T(u)f du.$$

7.3 Martingales and Dynkin's formula

Definition 7.8 (martingale). An \mathbb{F} -adapted stochastic process $X = \{X_t; t \ge 0\}$ such that $\mathbb{E}|X_t| < \infty$ for all $t \ge 0$ is called \mathbb{F} -martingale (submartingale, supermartingale) if for all $0 \le s \le t < \infty$ it holds

$$\mathbb{E}[X_t | \mathcal{F}_s] = (\geq, \leq) X_s \quad a.s.$$

Theorem 7.9 (Dynkin's formula). Let X be a homogeneous Markov process with càdlàg paths for all $\omega \in \Omega$ and transition function $\{P_t(x, A)\}$. Let $\{T(t); t \geq 0\}$ denote its semi-group

$$T(t)f(x) := \int_{E} f(y)P_t(x, dy) \quad for \quad f \in \mathcal{B}_E$$

and (A, D(A)) its generator. Then, for each $g \in D(A)$ the stochastic process $\{M_t; t \ge 0\}$ is an $\{\mathcal{F}_t^X; t \ge 0\}$ martingale, where

$$M_t := g(X_t) - g(X_0) - \int_0^t Ag(X_s) ds.$$
(7.3)

Remark 7.10. The integral $\int_0^t Ag(X_s) ds$ is understood as a Lebesgue-integral where for each $\omega \in \Omega$, i.e.

$$\int_0^t Ag(X_s)(\omega)ds := \int_0^t Ag(X_s)(\omega)\lambda(ds),$$

where λ denotes the Lebesgue measure.

Proof. Since by Definition 7.5 we have $A : D(A) \to \mathcal{B}_E$, it follows $Ag \in \mathcal{B}_E$, which means especially

$$Ag: (E, \mathcal{B}(E)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$$

Since X has càdlàg paths and is adapted, it is (see Lemma 6.2) progressively measurable, i.e.

$$X: ([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \to (E, \mathcal{B}(E)).$$

Hence for the composition we have

$$Ag(X_{\cdot}): ([0,t] \times \Omega, \mathcal{B}([0,t]) \otimes \mathcal{F}_t) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$$

Moreover, Ag is bounded as it is from \mathcal{B}_E . So the integral

$$\int_0^t Ag(X_s(\omega))\lambda(ds),$$

w.r.t. the Lebesgue measure λ is well-defined for $\omega \in \Omega$. Fubini's theorem implies that M_t is \mathcal{F}_t^X - measurable. Since g and Ag are bounded we have that $\mathbb{E}|M_t| < \infty$. From (7.3) we get, a.s.,

$$\mathbb{E}[M_{t+h}|\mathcal{F}_t^X] + g(X_0)$$

$$= \mathbb{E}\left[g(X_{t+h}) - \int_0^{t+h} Ag(X_s)ds|\mathcal{F}_t^X\right]$$

$$= \mathbb{E}\left[\left(g(X_{t+h}) - \int_t^{t+h} Ag(X_s)ds\right) \middle|\mathcal{F}_t^X\right] - \int_0^t Ag(X_s)ds$$

The Markov property from Definition 3.1 (equation (3.1)) implies that

$$\mathbb{E}\left[g(X_{t+h})|\mathcal{F}_t^X\right] = \int_E g(y)P_h(X_t, dy).$$

We show next that $\mathbb{E}\left[\int_{t}^{t+h} Ag(X_s)ds \middle| \mathcal{F}_{t}^{X}\right] = \int_{t}^{t+h} \mathbb{E}[Ag(X_s)|\mathcal{F}_{t}^{X}]ds$, where we take as version for $\mathbb{E}[Ag(X_s)|\mathcal{F}_{t}^{X}]$ the expression $\int_{E} Ag(y)P_{s-t}(X_t, dy)$ which is possible due to the MARKOV property of X. Since $g \in D(A)$ we know that Ag is a bounded function so that we can use Fubini's theorem to show that for any $G \in \mathcal{F}_{t}^{X}$ it holds

$$\int_{\Omega} \int_{t}^{t+h} Ag(X_{s}) ds \mathbb{1}_{G} d\mathbb{P} = \int_{t}^{t+h} \int_{\Omega} Ag(X_{s}) \mathbb{1}_{G} d\mathbb{P} ds$$
$$= \int_{t}^{t+h} \int_{\Omega} \int_{E} Ag(y) P_{s-t}(X_{t}, dy) \mathbb{1}_{G} d\mathbb{P} ds$$

so that

$$\mathbb{E}\left[\left(g(X_{t+h}) - \int_{t}^{t+h} Ag(X_s)ds\right) \middle| \mathcal{F}_{t}^{X}\right] - \int_{0}^{t} Ag(X_s)ds$$

$$= \int_E g(y)P_h(X_t, dy) - \int_t^{t+h} \int_E Ag(y)P_{s-t}(X_t, dy)ds - \int_0^t Ag(X_s)ds.$$

The previous computations and relation $T(h)f(X_t) = \int_E f(y)P_h(X_t, dy)$ imply

$$\begin{split} \mathbb{E}[M_{t+h}|\mathcal{F}_{t}^{X}] + g(X_{0}) \\ &= \int_{E} g(y)P_{h}(X_{t}, dy) - \int_{t}^{t+h} \int_{E} Ag(y)dsP_{s-t}(X_{t}, dy)ds - \int_{0}^{t} Ag(X_{s})ds \\ &= T(h)g(X_{t}) - \int_{t}^{t+h} T(s-t)Ag(X_{t})ds - \int_{0}^{t} Ag(X_{s})ds \\ &= T(h)g(X_{t}) - \int_{0}^{h} T(u)Ag(X_{t})du - \int_{0}^{t} Ag(X_{s})ds \\ &= T(h)g(X_{t}) - T(h)g(X_{t}) + g(X_{t}) - \int_{0}^{t} Ag(X_{s})ds \\ &= g(X_{t}) - \int_{0}^{t} Ag(X_{s})ds \\ &= M_{t} + g(X_{0}), \end{split}$$

where we used Theorem 7.7(3).

-		
L		
L		
L		

8 Weak solutions of SDEs and martingale problems

We recall the definition of a weak solution of an SDE.

Definition 8.1. Assume that $\sigma_{ij}, b_i : (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ are locally bounded. A *weak solution* of

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, \quad X_0 = x, \quad t \ge 0,$$
(8.1)

is a triplet $(X_t, B_t)_{t\geq 0}$, $(\Omega, \mathcal{F}, \mathbb{P})$, $(\mathcal{F}_t)_{t\geq 0}$, such that the following holds:

- (1) $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \geq 0})$ satisfies the usual conditions:
 - $(\Omega, \mathcal{F}, \mathbb{P})$ is complete.
 - All null-sets of \mathcal{F} belong to \mathcal{F}_0 .
 - The filtration is right-continuous.
- (2) X is a d-dimensional continuous and $(\mathcal{F}_t)_{t\geq 0}$ adapted process.
- (3) $(B_t)_{t\geq 0}$ is an *m*-dimensional $(\mathcal{F}_t)_{t\geq 0}$ -Brownian motion.
- (4) For $t \ge 0$ and $1 \le i \le d$ one has

$$X_t^{(i)} = x^{(i)} + \sum_{j=1}^m \int_0^t \sigma_{ij}(X_u) dB_u^{(j)} + \int_0^t b_i(X_u) du \text{ a.s.}$$

Let $a_{ij}(x) := \sum_{k=1}^{m} \sigma_{ik}(x) \sigma_{jk}(x)$, i.e. in the matrix notation $a(x) := \sigma(x) \sigma^{T}(x)$. Consider the differential operator

$$Af(x) := \frac{1}{2} \sum_{ij} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} f(x) + \sum_i b_i(x) \frac{\partial}{\partial x_i} f(x),$$
$$D(A) := C_c^2(\mathbb{R}^d),$$

the twice continuously differentiable functions with compact support in \mathbb{R}^d . Then it follows from Itô's formula that

$$f(X_t) - f(X_0) - \int_0^t Af(X(s))ds = \int_0^t \nabla f(X_s)\sigma(X_s)dB_s$$
 a.s.

is a martingale.

Definition 8.2 (canonical path-space). (1) By $\Omega := C_{\mathbb{R}^d}([0,\infty))$ we denote the space of continuous functions $\omega : [0,\infty) \to \mathbb{R}^d$.

(2) For $\omega, \bar{\omega} \in \Omega$ we let

$$d(\omega,\bar{\omega}) := \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\sup_{0 \le t \le n} |\omega(t) - \bar{\omega}(t)|}{1 + \sup_{0 \le t \le n} |\omega(t) - \bar{\omega}(t)|}$$

(3) We set

$$\mathcal{F}_t^X := \sigma\{X_s, s \in [0, t]\} \quad \text{where} \quad X_s : C_{\mathbb{R}^d}([0, \infty)) \to \mathbb{R}^d : \omega \mapsto \omega(s)$$

is the coordinate mapping.

- **Remark 8.3.** (1) $[C_{\mathbb{R}^d}([0,\infty)), d]$ is a complete separable metric space, see [5, Problem 2.4.1].
 - (2) For $0 \leq t \leq u$ we have $\mathcal{F}_t^X \subseteq \mathcal{F}_u^X \subseteq \mathcal{B}(C_{\mathbb{R}^d}([0,\infty)))$, see [5, Problem 2.4.2].

We define local martingales to introduce the concept of a martingale problem:

Definition 8.4 (local martingale). For a stochastic basis $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ satisfying the usual conditions, a continuous $(\mathcal{F}_t)_{t\geq 0}$ adapted process $M = (M_t)_{t\geq 0}$ with $M_0 = 0$ is a **local martingale** if there exists a sequence of stopping times $\tau_n : \Omega \to [0, \infty]$ with $\tau_1 \leq \tau_2 \leq \tau_3 \leq ... \uparrow \infty$ such that the stopped process M^{τ_n} given by $M_t^{\tau_n} := M_{\tau_n \wedge t}$ is a martingale for each $n \geq 1$.

Example 8.5 ([6]). Let $\alpha > 1$. Then the process which solves

$$X_t = 1 + \int_0^t X_s^\alpha dB_s$$

is a local martingale but not a martingale.

Definition 8.6 $(C_{\mathbb{R}^d}([0,\infty))$ - martingale problem). Given $(s,x) \in [0,\infty) \times \mathbb{R}^d$, a solution to the $C_{\mathbb{R}^d}([0,\infty))$ - martingale problem for the operator A is a probability measure \mathbb{P} on $(C_{\mathbb{R}^d}([0,\infty)), \overline{\mathcal{B}(C_{\mathbb{R}^d}([0,\infty)))}^{\mathbb{P}})$, where

$$\overline{\mathcal{B}(C_{\mathbb{R}^d}([0,\infty)))}^{\mathbb{P}}$$

is the \mathbb{P} -completion of $\mathcal{B}(C_{\mathbb{R}^d}([0,\infty)))$, satisfying

$$\mathbb{P}(\{\omega\in\Omega:\omega(t)=x,\quad 0\leq t\leq s\})=1$$

such that for each $f \in C_c^{\infty}(\mathbb{R}^d)$ the process $\{M_t^f; t \ge s\}$ with

$$M_t^f := f(X_t) - f(X_s) - \int_s^t Af(X_u) du$$

is a \mathbb{P} -martingale with respect to $((\mathcal{F}_t^{X,\mathbb{P}})_+)_{t\geq s}$, where $(\mathcal{F}_t^{X,\mathbb{P}})_{t\geq 0}$ is the augmentation under \mathbb{P} of $(\mathcal{F}_t^X)_{t\geq 0}$, and $(\mathcal{F}_t^{X,\mathbb{P}})_+ = \bigcap_{s>t} \mathcal{F}_s^{X,\mathbb{P}}$.

Theorem 8.7. Given by a probability measure \mathbb{P} on

$$(C_{\mathbb{R}^d}([0,\infty)), \mathcal{B}(C_{\mathbb{R}^d}[0,\infty)))$$

the following assertions are equivalent:

- (1) \mathbb{P} is a solution to the $C_{\mathbb{R}^d}([0,\infty))$ martingale problem for the operator (A, D(A)).
- (2) There is an extension of the stochastic basis

$$\left(C_{\mathbb{R}^d}([0,\infty)), \overline{\mathcal{B}(C_{\mathbb{R}^d}([0,\infty)))}^{\mathbb{P}}, \mathbb{P}, ((\mathcal{F}_t^{X,\mathbb{P}})_+)_{t\geq 0}\right)$$

such that the process $(X_t)_{t\geq 0}$ becomes a weak solution to (8.1).

Proof. $(2) \Rightarrow (1)$ follows from Itô's formula as explained above.

 $(1) \Rightarrow (2)$ We will show this direction only for the case d = m, see [5, Proposition 5.4.6] for the general case. We assume that X is a solution of the $C_{\mathbb{R}^d}([0,\infty))$ - martingale problem for the operator A.

(a) We observe that for any i = 1, ..., d and $f(x) := x_i$ the process $\{M_t^i := M_t^f; t \ge 0\}$ is a continuous, local martingale. This can be seen as follows: We define the stopping times for $n > \max\{|x^{(1)}|, ..., |x^{(d)}|\}$ by

$$\tau_n := \inf\{t > 0 : \max\{|X_t^{(1)}|, ..., |X_t^{(d)}|\} = n\}.$$

Then we can find a function $g_n \in C_c^{\infty}(\mathbb{R}^d)$ such that

$$(M^i)^{\tau_n} = (M^{g_n})^{\tau_n}.$$

By assumption M^{g_n} is a continuous martingale and it follows from the optional sampling theorem that the stopped process $(M^{g_n})^{\tau_n}$ is also a continuous martingale. In particular we have

$$M_t^i = X_t^{(i)} - x^{(i)} - \int_0^t b_i(X_s) ds.$$

Since X is continuous and b locally bounded, it holds

$$\int_0^t |b_i(X_s(\omega))| ds < \infty \quad \text{for all} \quad \omega \in \Omega \text{ and } t \ge 0.$$

(b) Also for $f(x) := x_i x_j$ for fixed i, j the process $M_t^{(ij)} := M_t^f$, defined by

$$M_t^{ij} = X_t^{(i)} X_t^{(j)} - x^{(i)} x^{(j)} - \int_0^t X_s^{(i)} b_j(X_s) + X_s^{(j)} b_i(X_s) + a_{ij}(X_s) ds$$

is a continuous, local martingale by the same reasoning as in step (a). We notice that

$$M_t^i M_t^j - \int_0^t a_{ij}(X_s) ds = M_t^{ij} - x^{(i)} M_t^j - x^{(j)} M_t^i - R_t$$

where

$$R_t := \int_0^t (X_s^{(i)} - X_t^{(i)}) b_j(X_s) ds + \int_0^t (X_s^{(j)} - X_t^{(j)}) b_i(X_s) ds + \int_0^t b_i(X_s) ds \int_0^t b_j(X_s) ds.$$

Indeed,

$$M_t^i M_t^j - \int_0^t a_{ij}(X_s) ds$$

= $\left(X_t^{(i)} - x^{(i)} - \int_0^t b_i(X_s) ds\right) \left(X_t^{(j)} - x^{(j)} - \int_0^t b_j(X_s) ds\right) - \int_0^t a_{ij}(X_s) ds$
= $X_t^{(i)} X_t^{(j)} - X_t^{(i)} \left(x^{(j)} + \int_0^t b_j(X_s) ds\right) - \left(x^{(i)} + \int_0^t b_i(X_s) ds\right) X_t^{(j)}$
+ $\left(x^{(j)} + \int_0^t b_j(X_s) ds\right) \left(x^{(i)} + \int_0^t b_i(X_s) ds\right) - \int_0^t a_{ij}(X_s) ds$

$$= M_t^{ij} + \underbrace{x^{(i)}}_{0} x^{(j)} + \int_0^t X_s^{(i)} b_j(X_s) + X_s^{(j)} b_i(X_s) ds -X_t^{(i)} x^{(j)} - X_t^{(j)} \underbrace{x^{(i)}}_{0} - \int_0^t X_t^{(i)} b_j(X_s) + X_t^{(j)} b_i(X_s) ds +x^{(i)} x^{(j)} + x^{(j)} \int_0^t b_i(X_s) ds + \underbrace{x^{(i)}}_{0} \int_0^t b_j(X_s) ds + \int_0^t b_j(X_s) ds \int_0^t b_i(X_s) ds = M_t^{ij} + \int_0^t (X_s^{(i)} - X_t^{(i)}) b_j(X_s) + (X_s^{(j)} - X_t^{(j)}) b_i(X_s) ds -\underbrace{x^{(i)}}_{M_t^j} \left(\underbrace{-x^{(i)} + X_t^{(j)} - \int_0^t b_j(X_s) ds}_{M_t^j} \right) -x^{(j)} \left(-x^{(i)} + X_t^{(i)} - \int_0^t b_i(X_s) ds \right) + \int_0^t b_j(X_s) ds \int_0^t b_i(X_s) ds.$$

Since $X_s^{(i)} - X_t^{(i)} = M_s^i - M_t^i + \int_s^t b_j(X_u) du$ it follows by Itô's formula that

$$R_{t} = \int_{0}^{t} (X_{s}^{(i)} - X_{t}^{(i)})b_{j}(X_{s})ds + \int_{0}^{t} (X_{s}^{(j)} - X_{t}^{(j)})b_{i}(X_{s})ds + \int_{0}^{t} b_{i}(X_{s})ds \int_{0}^{t} b_{j}(X_{s})ds = \int_{0}^{t} (M_{s}^{i} - M_{t}^{i})b_{j}(X_{s})ds + \int_{0}^{t} (M_{s}^{j} - M_{t}^{j})b_{i}(X_{s})ds = -\int_{0}^{t} \int_{0}^{s} b_{j}(X_{u})dudM_{s}^{i} - \int_{0}^{t} \int_{0}^{s} b_{i}(X_{u})dudM_{s}^{j}.$$

Since R_t is a continuous, local martingale and a process of bounded variation at the same time, $R_t = 0$ a.s. for all t. Then

$$M_t^i M_t^j - \int_0^t a_{ij}(X_s) ds$$

is a continuous, local martingale, and

$$\langle M^i, M^j \rangle_t = \int_0^t a_{ij}(X_s) ds.$$

By the Martingale Representation Theorem A.3 we know that there exists an extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ of $(\Omega, \mathcal{F}, \mathbb{P})$ carrying a d-dimensional $(\tilde{\mathcal{F}}_t)$ Brownian motion \tilde{B} such that $(\tilde{\mathcal{F}}_t)$ satisfies the usual conditions, and measurable, adapted processes $\xi^{i,j}$, i, j = 1, ..., d, with

$$\tilde{\mathbb{P}}\left(\int_0^t (\xi_s^{i,j})^2 ds < \infty\right) = 1$$

such that

$$M_t^i = \sum_{j=1}^d \int_0^t \xi_s^{i,j} d\tilde{B}_s^j.$$

We have now

$$X_t = x + \int_0^t b(X_s) ds + \int_0^t \xi_s d\tilde{B}_s.$$

It remains to show that there exists an d-dimensional $(\tilde{\mathcal{F}}_t)$ Brownian motion B on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ such that $\tilde{\mathbb{P}}$ a.s.

$$\int_0^t \xi_s d\tilde{B}_s = \int_0^t \sigma(X_s) dB_s, \quad t \in [0, \infty).$$

For this we will use the following lemma.

Lemma 8.8. Let

 $\mathcal{D} := \{(\xi, \sigma); \xi \text{ and } \sigma \text{ are } d \times d \text{ matrices with } \xi \xi^T = \sigma \sigma^T \}.$

On \mathcal{D} there exists a Borel-measurable map $\mathcal{R} : (\mathcal{D}, \mathcal{D} \cap \mathcal{B}(\mathbb{R}^{d^2}) \to (\mathbb{R}^{d^2}, \mathcal{B}(\mathbb{R}^{d^2}))$ such that

$$\sigma = \xi \mathcal{R}(\xi, \sigma), \quad \mathcal{R}(\xi, \sigma) \mathcal{R}^T(\xi, \sigma) = I; \quad (\xi, \sigma) \in \mathcal{D}.$$

We set

$$B_t = \int_0^t \mathcal{R}^T(\xi_s, \sigma(X_s)) d\tilde{B}_s.$$

Then B is a continuous local martingale and

$$\langle B^{(i)}, B^{(i)} \rangle_t = \int_0^t \mathcal{R}(\xi_s, \sigma(X_s)) \mathcal{R}^T(\xi_s, \sigma(X_s)) ds = t \delta_{ij}.$$

Lévy's theorem (see [5, Theorem 3.3.16]) implies that B is a Brownian motion.

Usig Theorem 8.7 one can derive the following statement, which is the second main result of this section:

Theorem 8.9 (KOLMOGOROV 1965, STROOCK-VARADHAN 1969). If b_i, σ_{ij} : $\mathbb{R}^d \to \mathbb{R}$ are continuous and bounded and if μ is an initial distribution on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that

$$\int_{\mathbb{R}^d} |x|^p \mu(dx) < \infty \quad for \ some \quad p \in (2,\infty),$$

then there is a weak solution to the SDE

$$X_t = X_0 + \int_0^t \sigma(X_s) dB_s + \int_0^t b(X_s) ds \quad with \quad \text{law}(X_0) = \mu.$$

9 Feller processes

9.1 Feller semi-groups, Feller transition functions and Feller processes

Definition 9.1.

- (1) $C_0(\mathbb{R}^d) := \{f : \mathbb{R}^d \to \mathbb{R} : f \text{ continuous, } \lim_{|x|\to\infty} |f(x)| = 0\}$ is equipped with the norm $||f|| = ||f||_{C_0(\mathbb{R}^d)} := \sup_{x\in\mathbb{R}^d} |f(x)|.$
- (2) $\{T(t); t \ge 0\}$ is a Feller semi-group if
 - (a) $T(t): C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$ is positive for all $t \ge 0$, i.e. $T(t)f(x) \ge 0$ $\forall x \text{ if } f: \mathbb{R}^d \to [0, \infty),$
 - (b) $\{T(t); t \ge 0\}$ is a strongly continuous contraction semi-group.
- (3) A FELLER semi-group is *conservative* if for all $x \in \mathbb{R}^d$ it holds

$$\sup_{f \in C_0(\mathbb{R}^d), \|f\|=1} |T(t)f(x)| = 1.$$

Remark 9.2.

- (1) $[C_0(\mathbb{R}^d), \|\cdot\|_{C_0(\mathbb{R}^d)}]$ is a Banach space.
- (2) The subspace $C_c(\mathbb{R}^d)$ of compactly supported functions is dense in $C_0(\mathbb{R}^d)$.

Definition 9.3. If E is a locally compact HAUSDORFF space, a BOREL measure on $(E, \mathcal{B}(E))$ is a *Radon measure* provided that

- (1) $\mu(K) < \infty$ for all compact sets K,
- (2) $\mu(A) = \inf\{\mu(U) : U \supseteq A, U \text{ open}\}$ for all $A \in \mathcal{B}(E)$,
- (3) $\mu(B) = \sup\{\mu(K) : K \subseteq B, K \text{ compact}\}$ for all open set B.

We recall the RIESZ representation theorem (see, for example, [3, Theorem 7.2]): If E is a locally compact Hausdorff space, L a positive linear functional

on $C_c(E) := \{F : E \to \mathbb{R} : \text{continuous function with compact support}\}$, then there exists a unique Radon measure μ on $(E, \mathcal{B}(E))$ such that

$$LF = \int_E F(y)\mu(dy).$$

We use this theorem to prove the following:

Theorem 9.4. Let $\{T(t); t \ge 0\}$ be a conservative FELLER semi-group on $C_0(\mathbb{R}^d)$. Then there exists a homogeneous transition function $\{P_t : t \ge 0\}$, $P_t : \mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d) \to [0, 1]$, such that

$$T(t)f(x) = \int_{\mathbb{R}^d} f(y)P_t(x, dy) \quad \text{for all} \quad x \in \mathbb{R}^d \text{ and } f \in C_0(\mathbb{R}^d).$$

Proof. By the RIESZ representation theorem we get for each $x \in \mathbb{R}^d$ and each $t \geq 0$ a measure $P_t(x, \cdot)$ on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ such that

$$(T(t)f)(x) = \int_{\mathbb{R}^d} f(y) P_t(x, dy), \quad \forall f \in C_c(\mathbb{R}^d).$$

We need to show that this family of measures $\{P_t(x, \cdot); t \ge 0, x \in \mathbb{R}^d\}$ has all properties of a transition function.

(a) The map $A \mapsto P_t(x, A)$ is a probability measure: Since $\{P_t(x, \cdot) \text{ is a measure, we only need to check whether } P_t(x, \mathbb{R}^d) = 1$, which will be an exercise.

(b) For $A \in \mathcal{B}(\mathbb{R}^d)$ we have to show that

$$x \mapsto P_t(x, A) : (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$$
 (9.1)

We let

$$\mathcal{H} := \{ f : \mathbb{R}^d \to \mathbb{R} : \mathcal{B}(\mathbb{R}^d) \text{ measurable and bounded}, \\ T(t)f \text{ is } \mathcal{B}(\mathbb{R}^d) \text{ measurable} \}, \\ \mathcal{A} := \{ [a_1, b_1] \times \ldots \times [a_n, b_n]; -\infty \le a_k \le b_k \le \infty \} \cup \emptyset.$$

By definition we have that $\sigma(\mathcal{A}) = \mathcal{B}(\mathbb{R}^d)$. Now we check the assumptions (1), (2), and (3) of Theorem A.2.

- The assumption (2), that \mathcal{H} is a linear space, is obvious.
- The assumption (3), that \mathcal{H} is a monotone class, follows from monotone convergence.
- $-\mathbb{1}_A \in \mathcal{H}$ for all $A \in \mathcal{A}$ is verified as follows:

First we assume that $-\infty < a_k \leq b_k < \infty$. In this case we approximate $\mathbb{1}_A$ by $f_n \in C_c(\mathbb{R}^d)$ as follows: let $f_n(x_1, ..., x_n) := f_{n,1}(x_1) ... f_{n,d}(x_d)$ with linear, continuous functions

$$f_{n,k}(x_k) := \begin{cases} 1 & a_k \le x_k \le b_k, \\ 0 & x \le a_k - \frac{1}{n} \text{ or } x \ge b_k + \frac{1}{n}. \end{cases}$$

Then $f_n \downarrow \mathbb{1}_A$. Since $T(t) f_n \in C_0(\mathbb{R}^d)$ because $f_n \in C_c(\mathbb{R}^d) \subseteq C_0(\mathbb{R}^d)$, we get

$$T(t)f_n: (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$$

It holds

$$T(t)f_n(x) = \int_{\mathbb{R}^d} f_n(y)P_t(x, dy) \to P_t(x, A) \quad \text{for} \quad n \to \infty.$$

Hence $P_t(\cdot, A) : (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, which means $\mathbb{1}_A \in \mathcal{H}$. Furthermore, the case $a_k = -\infty$ and $b_k = \infty$ can be done by monotone convergence again. Applying Theorem A.2, we obtain that \mathcal{H} contains all bounded and $\mathcal{B}(\mathbb{R}^d)$ -measurable functions.

(c) The CHAPMAN-KOLMOGOROV equation for $\{P_t : t \ge 0\}$ we conclude from T(t+s) = T(t)T(s) for all $s, t \ge 0$, which can be again done by approximating $\mathbb{1}_A, A \in \mathcal{A}$ and using dominated convergence and the Monotone Class Theorem.

(d) T(0) = Id gives that $P_0(x, \cdot)$ is the measure μ_0 such that

$$f(x) = (T(0)f)(x) = \int_{\mathbb{R}^d} f(y)P_0(x, dy).$$

But this implies that $P_0(x, A) = \delta_x(A)$, which will be an exercise.

Definition 9.5.

(1) A transition function associated to a conservative FELLER semi-group is called a *Feller transition function*.

(2) A MARKOV process having a FELLER transition function is called a *Feller process*.

In general we have the following implications:

Theorem 9.6.

- (1) Every càdlàg Feller process is a strong MARKOV process.
- (2) Every strong MARKOV process is a MARKOV process.

Now we characterize FELLER transition functions:

Theorem 9.7. A transition function $\{P_t(x, A)\}$ is FELLER if and only if

- (1) $\int_{\mathbb{R}^d} f(y) P_t(\cdot, dy) \in C_0(\mathbb{R}^d)$ for $f \in C_0(\mathbb{R}^d)$ and all $t \ge 0$,
- (2) $\lim_{t\downarrow 0} \int_{\mathbb{R}^d} f(y) P_t(x, dy) = f(x) \text{ for all } f \in C_0(\mathbb{R}^d) \text{ and } x \in \mathbb{R}^d.$

Proof. \implies is easy to see so that we turn to \iff and will show that (1) and (2) imply that $\{T(t); t \ge 0\}$ with

$$T(t)f(x) = \int_{\mathbb{R}^d} f(y)P_t(x, dy)$$

is a Feller semi-group.

(a) We know by Theorem 7.4 that $\{T(t); t \ge 0\}$ is a contraction semi-group. By (1) we have that $T(t) : C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$. And of course, any T(t) is positive. So we only have to show that

$$\lim_{t \downarrow 0} ||T(t)f - f|| = 0 \quad \text{for all} \quad f \in C_0(\mathbb{R}^d).$$

which is the strong continuity.

Since by (1) we have that $T(t)f \in C_0(\mathbb{R}^d)$ we conclude by (2) that

$$\lim_{s \downarrow 0} T(t+s)f(x) = T(t)f(x) \quad \text{for all} \quad x \in \mathbb{R}^d.$$

Hence we have that

 $-t \mapsto T(t)f(x)$ is right-continuous,

 $-x \mapsto T(t)f(x)$ is continuous.

This implies (similarly to the proof of the fact that right-continuity and adaptedness implies progressive measurability) that

$$(t,x) \mapsto T(t)f(x) : ([0,\infty) \times \mathbb{R}^d, \mathcal{B}([0,\infty)) \otimes \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})).$$

(b) By FUBINI's theorem we have for any p > 0, that

$$x \mapsto \mathcal{R}_p f(x) := \int_0^\infty e^{-pt} T(t) f(x) dt : (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})),$$

where the map $f \mapsto \mathcal{R}_p f$ is called the resolvent of order p of $\{T(t); t \ge 0\}$. It holds

$$\lim_{p \to \infty} p \mathcal{R}_p f(x) = f(x).$$

Indeed, since $\{T(t); t \ge 0\}$ is a contraction semi-group, it holds $||T(\frac{u}{p})f|| \le ||f||$ for $u \ge 0$. Hence we can use dominated convergence in the following expression, and it follows from (2) that

$$p\mathcal{R}_p f(x) = \int_0^\infty p e^{-pt} T(t) f(x) dt = \int_0^\infty e^{-u} T\left(\frac{u}{p}\right) f(x) du \to f(x) \quad (9.2)$$

for $p \to \infty$. Moreover, one can show that $\mathcal{R}_p f \in C_0(\mathbb{R}^d)$, so that

$$\mathcal{R}_p: C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d).$$

For p, q > 0 it holds

$$(q-p)\mathcal{R}_{p}\mathcal{R}_{q}f = (q-p)\mathcal{R}_{p}\int_{0}^{\infty} e^{-qt}T(t)fdt$$
$$= (q-p)\int_{0}^{\infty} e^{-ps}T(s)\int_{0}^{\infty} e^{-qt}T(t)fdtds$$
$$= (q-p)\int_{0}^{\infty} e^{-(p-q)s}\int_{0}^{\infty} e^{-qt}T(t+s)fdtds$$
$$= (q-p)\int_{0}^{\infty} e^{-(p-q)s}\int_{s}^{\infty} e^{-qu}T(u)fduds$$
$$= (q-p)\int_{0}^{\infty} e^{-qu}T(u)f\int_{0}^{u} e^{-(p-q)s}dsdu$$

$$= (q-p) \int_0^\infty e^{-qu} T(u) f \frac{1}{q-p} (e^{-(p-q)u} - 1) du$$

$$= -\mathcal{R}_q f + \int_0^\infty e^{-pu} T(u) f du$$

$$= \mathcal{R}_p f - \mathcal{R}_q f.$$

This also implies that

$$(q-p)\mathcal{R}_p\mathcal{R}_qf = \mathcal{R}_pf - \mathcal{R}_qf = (q-p)\mathcal{R}_q\mathcal{R}_pf.$$

Now, let

$$\operatorname{Im}(\mathcal{R}_p) := \{\mathcal{R}_p f; f \in C_0(\mathbb{R}^d)\}.$$

If $g \in \text{Im}(\mathcal{R}_p)$, then there exists $f \in C_0(\mathbb{R}^d)$ such that $g = \mathcal{R}_p f$ and we have

$$g = \mathcal{R}_p f = \mathcal{R}_q f + (q-p)\mathcal{R}_q \mathcal{R}_p f = \mathcal{R}_q (f + (q-p)\mathcal{R}_p f) \in \operatorname{Im}(\mathcal{R}_q).$$

Hence $\operatorname{Im}(\mathcal{R}_p) \subseteq \operatorname{Im}(\mathcal{R}_p)$ and by symmetry, $\operatorname{Im}(\mathcal{R}_p) = \operatorname{Im}(\mathcal{R}_p)$. Let $E := \operatorname{Im}(\mathcal{R}_p)$. By (9.2) we have

$$\|p\mathcal{R}_p f\| \le \|f\|.$$

(c) We show that $E \subseteq C_0(\mathbb{R}^d)$ is dense. We follow [3, Section 7.3] and notice that $C_0(\mathbb{R}^d)$ is the closure of $C_c(\mathbb{R}^d)$ with respect to $||f|| := \sup_{x \in \mathbb{R}^d} |f(x)|$.

Assume that $E \subseteq C_0(\mathbb{R}^d)$ is not dense. By the HAHN-BANACH theorem there is linear and continuous functional $L: C_0(\mathbb{R}^d) \to \mathbb{R}$ such that Lf = 0if $f \in E$ and positive for an $f_0 \in C_0(\mathbb{R}^d)$ which is outside the closure of Eand given by

$$L(f) = \int_{\mathbb{R}^d} f(x)\mu(dx)$$
 for some signed measure μ .

However, by dominated convergence we have

$$L(f_0) = \int_{\mathbb{R}^d} f_0(x)\mu(dx) = \lim_{p \to \infty} \int_{\mathbb{R}^d} p\mathcal{R}_p f_0(x)\mu(dx) = 0,$$

which is a contradiction so that D must be dense.

(d) Now we have

$$T(t)\mathcal{R}_p f(x) = T(t) \int_0^\infty e^{-pu} T(u) f(x) du$$

$$= e^{pt} \int_t^\infty e^{-ps} T(s) f(x) ds.$$

Now we fix p = 1 and consider $f \in E$ so that $f = \mathcal{R}_1 g$ for some $g \in C_0(\mathbb{R}^d)$. This implies

$$\begin{aligned} \|T(t)\mathcal{R}_{1}g - \mathcal{R}_{1}g\| \\ &= \sup_{x \in \mathbb{R}^{d}} \left| e^{t} \int_{t}^{\infty} e^{-s}T(s)g(x)du - \int_{0}^{\infty} e^{-u}T(u)g(x)du \right| \\ &= \sup_{x \in \mathbb{R}^{d}} \left| (e^{t} - 1) \int_{t}^{\infty} e^{-s}T(s)g(x)du - \int_{0}^{t} e^{-u}T(u)g(x)du \right| \\ &\leq \left[(e^{pt} - 1) + t \right] \left[\int_{0}^{\infty} e^{-s}ds \right] \|g\| \to 0, \quad t \downarrow 0. \end{aligned}$$

So we have shown that $\{T(t); t \geq 0\}$ is strongly continuous on E. Since $D \subseteq C_0(\mathbb{R}^d)$ is dense, we have also show strong continuity on $C_0(\mathbb{R}^d)$. \Box

9.2 Càdlàg modifications of Feller processes

In Definition 6.5 we defined a LÉVY process as a stochastic process with a.s. càdlàg paths. In Theorem 6.7 we have shown that a Lévy process (with càdlàg paths) is a strong MARKOV process. By the DANIELL-KOLMOGOROV Theorem we know that MARKOV processes exist by Theorem 4.3. But this Theorem does not say anything about path properties.

We will proceed with the definition of a Lévy process in law (and leave it as an exercise to show that such a process is a FELLER process). We will prove then that any FELLER process has a càdlàg modification.

Definition 9.8 (LÉVY process in law). A stochastic process $X = \{X_t; t \ge 0\}$ on $(\Omega, \mathcal{F}, \mathbb{P})$ with $X_t : (\Omega, \mathcal{F}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ is a LÉVY process in law if

(1) X is continuous in probability, i.e. for all $t \ge 0$ and $\varepsilon > 0$ one has

$$\lim_{s \downarrow t} \mathbb{P}(|X_s - X_t| > \varepsilon) = 0,$$

- (2) $\mathbb{P}(X_0 = 0) = 1,$
- (3) for all $0 \le s \le t$ one has $X_t X_s \stackrel{d}{=} X_{t-s}$,

(4) for all $0 \le s \le t$ one has $X_t - X_s$ is independent of \mathcal{F}_s^X .

Theorem 9.9. A Lévy process in law is a Feller process.

We shall prove this as an exercise.

Theorem 9.10. Let X be an $\{\mathcal{F}_t; t \ge 0\}$ -submartingale. Then the following holds:

(1) For any countable dense subset $D \subseteq [0, \infty)$ there is a $\Omega^* \in \mathcal{F}$ with $\mathbb{P}(\Omega^*) = 1$ such that for every $\omega \in \Omega^*$ one has

$$X_{t+}(\omega) := \lim_{s \downarrow t, s \in D} X_s(\omega) \quad and \quad X_{t-}(\omega) := \lim_{s \uparrow t, s \in D} X_s(\omega)$$

exists for all $t \ge 0$ (t > 0, respectively).

- (2) $\{X_{t+}; t \ge 0\}$ is an $\{\mathcal{F}_{t+}; t \ge 0\}$ submartingale with a.s. càdlàg paths.
- (3) Assume that $\{\mathcal{F}_t; t \geq 0\}$ satisfies the usual conditions. Then X has a càdlàg modification if and only if $t \mapsto \mathbb{E}X_t$ is right-continuous.

The proof can be found in [5, Proposition 1.3.14 and Theorem 1.3.13].

Lemma 9.11. Let X be a FELLER process. For any p > 0 and any

$$f \in C_0(\mathbb{R}^d; [0, \infty)) := \{ f \in C_0(\mathbb{R}^d) : f \ge 0 \}$$

the process

$$\{e^{-pt}R_pf(X_t); t \ge 0\}$$

is a supermartingale w.r.t. the natural filtration $\{\mathcal{F}_t^X; t \geq 0\}$ and for any initial distribution $\mathbb{P}_{\nu}(X_0 \in B) = \nu(B)$ for $B \in \mathcal{B}(\mathbb{R}^d)$.

Proof. Recall that for p > 0 we defined in the proof of Theorem 9.7 the resolvent

$$f \mapsto \mathcal{R}_p f := \int_0^\infty e^{-pt} T(t) f dt, \quad f \in C_0(\mathbb{R}^d).$$

(a) We show that $\mathcal{R}_p : C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$: Since

$$\|\mathcal{R}_p f\| = \left\| \int_0^\infty e^{-pt} T(t) f dt \right\| \le \int_0^\infty e^{-pt} \|T(t)f\| dt$$

and $||T(t)f|| \leq ||f||$, we may use dominated convergence, and since $T(t)f \in C_0(\mathbb{R}^d)$ it holds

$$\lim_{x_n \to x} \mathcal{R}_p f(x_n) = \lim_{x_n \to x} \int_0^\infty e^{-pt} T(t) f(x_n) dt$$
$$= \int_0^\infty e^{-pt} \lim_{x_n \to x} T(t) f(x_n) dt$$
$$= \mathcal{R}_p f(x).$$

In the same way we verify that $\lim_{|x_n|\to\infty} \mathcal{R}_p f(x_n) = 0$. (b) For $x \in \mathbb{R}^d$, $f \in C_0(\mathbb{R}^d; [0, \infty))$, and h > 0 one has

$$e^{-ph}T(h)\mathcal{R}_pf(x) = e^{-ph}T(h)\int_0^\infty e^{-pt}T(t)f(x)dt$$

$$= \int_0^\infty e^{-p(t+h)}T(t+h)f(x)dt$$

$$= \int_h^\infty e^{-pu}T(u)f(x)du$$

$$\leq \int_0^\infty e^{-pu}T(u)f(x)du$$

$$= \mathcal{R}_pf(x).$$

(c) The process $\{e^{-pt}R_pf(X_t); t \ge 0\}$ is a supermartingale: Let $0 \le s \le t$. Since X is a FELLER process, it has a transition function, and by Definition 3.1 we may write

$$\mathbb{E}_{\mathbb{P}_{\nu}}[e^{-pt}\mathcal{R}_{p}f(X_{t})|\mathcal{F}_{s}^{X}] = e^{-pt}\int_{\mathbb{R}^{d}}\mathcal{R}_{p}f(y)P_{t-s}(X_{s},dy)$$
$$= e^{-pt}T(t-s)\mathcal{R}_{p}f(X_{s}).$$

From step (b) we conclude

$$e^{-pt}T(t-s)\mathcal{R}_pf(X_s) \le e^{-ps}\mathcal{R}_pf(X_s).$$

Lemma 9.12. Let Y_1 and Y_2 be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in \mathbb{R}^d . Then the following holds:

$$Y_1 = Y_2 \quad a.s. \iff \mathbb{E}f_1(Y_1)f_2(Y_2) = \mathbb{E}f_1(Y_1)f_2(Y_1)$$

for all $f_1, f_2 \in C_0(\mathbb{R}^d)$

Proof. The direction \implies is evident. We will use the Monotone Class Theorem A.2 to verify \Leftarrow . Let

$$H := \{h : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} : \quad h \text{ bounded and measurable}, \\ \mathbb{E}h(Y_1, Y_2) = \mathbb{E}h(Y_1, Y_1)\}$$

As before we can approximate $\mathbb{1}_{[a_1,b_1]\times\ldots\times[a_{2d},b_{2d}]}$ for $-\infty < a_i \leq b_i < \infty$ by continuous functions with values in [0,1]. Since by the Monotone Class Theorem the equality

$$\mathbb{E}h(Y_1, Y_2) = \mathbb{E}h(Y_1, Y_1)$$

holds for all $h : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ which are bounded and measurable, we choose $h(x, y) := \mathbb{1}_{\{(x,y) \in \mathbb{R}^d \times \mathbb{R}^d : x \neq y\}}$ and infer

$$\mathbb{P}(Y_1 \neq Y_2) = \mathbb{P}(Y_1 \neq Y_1) = 0. \quad \Box$$

Theorem 9.13. If X is a FELLER process such that there is a dense set $D \subseteq [0, \infty)$ such that

$$\mathbb{P}\left(\sup_{t\in[0,T]\cap D}|X_t|<\infty\right)=1\quad for \ all\quad T>0,$$

then it has a càdlàg modification.

Sketch of the proof. (a) One-point compactification (ALEXANDROFF extension) of \mathbb{R}^d : Let ∂ be a point not in \mathbb{R}^d and denote by \mathcal{O} the open sets of \mathbb{R}^d . We define a topology \mathcal{O}' on $(\mathbb{R}^d)^\partial := \mathbb{R}^d \cup \{\partial\}$ as

$$\mathcal{O}' := \{ A \subset (\mathbb{R}^d)^\partial : \quad \text{either } A \in \mathcal{O} \\ \text{or } \partial \in A \text{ and } A^c \text{ is a compact subset of } \mathbb{R}^d \}.$$

Then $((\mathbb{R}^d)^\partial, \mathcal{O}')$ is a compact HAUSDORFF space. Any function $f \in C_0(\mathbb{R}^d)$ will be extended to $f \in C_0((\mathbb{R}^d)^\partial)$ by $f(\partial) := 0$.

(b) Let $(f_n)_{n=1}^{\infty} \subseteq C_0(\mathbb{R}^d; [0, \infty))$ be a sequence which separates the points, i.e. for any $x, y \in (\mathbb{R}^d)^{\partial}$ with $x \neq y$ there exists $n \in \mathbb{N}$ such that $f_n(x) \neq f_n(y)$, where we set $f_n(\partial) := 0$. Such a sequence exists, which we will not prove here. We want to show that then also

$$\mathcal{S} := \{\mathcal{R}_p f_n : p, n \in \mathbb{N}\}$$

is a countable set (which is clear) and separates the points: in fact, it holds for any p > 0 that

$$p\mathcal{R}_p f(x) = p \int_0^\infty e^{-pt} T(t) f(x) dt = \int_0^\infty e^{-u} T\left(\frac{u}{p}\right) f(x) du.$$

This implies

$$\sup_{x \in (\mathbb{R}^d)^{\partial}} \left| p \mathcal{R}_p f(x) - f(x) \right| = \sup_{x \in (\mathbb{R}^d)^{\partial}} \left| \int_0^\infty e^{-u} \left(T \left(\frac{u}{p} \right) f \right)(x) - f(x) \right) du \right|$$

$$\leq \int_0^\infty e^{-u} \left\| T \left(\frac{u}{p} \right) f - f \right\| du \to 0, \quad p \to \infty,$$

by dominated convergence since $||T\left(\frac{u}{p}\right)f - f|| \leq 2||f||$ and the strong continuity of the semi-group implies $||T\left(\frac{u}{p}\right)f - f|| \to 0$ for $p \to \infty$. Then, if $x \neq y$ there exists a function f_n with $f_n(x) \neq f_n(y)$ and can find a $p \in \mathbb{N}$ such that $\mathcal{R}_p f_n(x) \neq \mathcal{R}_p f_n(y)$.

(c) We fix a set $D \subseteq [0, \infty)$ which is countable and dense. We show that there exists $\Omega^* \in \mathcal{F}$ with $\mathbb{P}(\Omega^*) = 1$ and such that for all $\omega \in \Omega^*$ and for all $n, p \in \mathbb{N}$ one has

$$[0,\infty) \ni t \mapsto \mathcal{R}_p f_n(X_t(\omega)) \tag{9.3}$$

has right and left (for t > 0) limits along D. From Lemma 9.11 we know that

$$\{e^{-pt}\mathcal{R}_p f_n(X_t); t \ge 0\}$$
 is an $\{\mathcal{F}_t^X; t \ge 0\}$ supermartingale.

By Theorem 9.10 (1) we have for any $p, n \in \mathbb{N}$ a set $\Omega_{n,p}^* \in \mathcal{F}$ with $\mathbb{P}(\Omega_{n,p}^*) = 1$ such that for all $\omega \in \Omega_{n,p}^*$ and for all $t \ge 0$ (t > 0, respectively) the limits

$$\lim_{s \downarrow t, s \in D} e^{-ps} \mathcal{R}_p f_n(X_s(\omega)) \quad \left(\lim_{s \uparrow t, s \in D} e^{-ps} \mathcal{R}_p f_n(X_s(\omega))\right)$$

exist. Since $s \mapsto e^{ps}$ is continuous we get assertion (9.3) by setting

$$\Omega^* := \bigcap_{n=1}^{\infty} \bigcap_{p=1}^{\infty} \Omega^*_{n,p}.$$

(d) We show that for all $\omega \in \Omega^*$ the map $t \to X_t(\omega)$ has right limits along D: If the limit $\lim_{s \downarrow t, s \in D} X_s(\omega)$ does not exist, then there are $x, y \in (\mathbb{R}^d)^\partial$ and sequences $(s_n)_n, (\bar{s}_m)_m \subseteq D$ with $s_n \downarrow t, \bar{s}_m \downarrow t$, such that

$$\lim_{n \to \infty} X_{s_n}(\omega) = x \quad \text{and} \quad \lim_{m \to \infty} X_{\bar{s}_m}(\omega) = y.$$

But there are $p, k \in \mathbb{N}$ such that $\mathcal{R}_p f_k(x) \neq \mathcal{R}_p f_k(y)$ which is a contradiction to the fact that $s \mapsto \mathcal{R}_p f_k(X_s(\omega))$ has right limits along D.

(e) Construction of a right-continuous modification: For $\omega \in \Omega^*$ we set for all $t \ge 0$

$$\tilde{X}_t(\omega) := \lim_{s \downarrow t, s \in D} X_s(\omega),$$

and for $\omega \notin \Omega^*$ we set $\tilde{X}_t(\omega) := x$, where $x \in \mathbb{R}^d$ is arbitrary and fixed. Then we have that

$$X_t = X_t \quad a.s$$

where we argue as follows: Since for $f, g \in C_0(\mathbb{R}^d)$ we have

$$\mathbb{E}f(X_t)g(\tilde{X}_t) = \lim_{s \downarrow t, s \in D} \mathbb{E}f(X_t)g(X_s)$$

$$= \lim_{s \downarrow t, s \in D} \mathbb{E}\mathbb{E}[f(X_t)g(X_s)|\mathcal{F}_t^X]$$

$$= \lim_{s \downarrow t, s \in D} \mathbb{E}f(X_t)\mathbb{E}[g(X_s)|\mathcal{F}_t^X]$$

$$= \lim_{s \downarrow t, s \in D} \mathbb{E}f(X_t)T(s-t)g(X_t)$$

$$= \mathbb{E}f(X_t)g(X_t),$$

where we used the Markov property for the second last equation while the last equation follows from the fact that $||T(s-t)h - h|| \to t$ for $s \downarrow 0$. By Lemma 9.12 we conclude $\tilde{X}_t = X_t$ a.s.

It is an exercise to verify that $t \to \tilde{X}_t$ is right-continuous for all $\omega \in \Omega$.

(f) Càdlàg modifications: We use [5, Theorem 1.3.8(v)] which states that almost every path of a right-continuous submartingale has left limits for any $t \in (0, \infty)$. Since $\{-e^{-pt}\mathcal{R}_p f_n(\tilde{X}_t); t \ge 0\}$ is a right-continuous submartingale, we can proceed as above (using the fact that \mathcal{S} separates the points) so show that $t \mapsto \tilde{X}(\omega)$ is càdlàg for almost all $\omega \in \Omega$. **Remark 9.14.** For a LÉVY process in law it can be shown (see [4, Theorem II.2.68]) that the assumption

$$\mathbb{P}(\sup\{|X_t|:t\in[0,T]\cap D\}<\infty)=1$$

is satisfied for all T > 0.

A Appendix

Lemma A.1 (Factorization Lemma). Assume $\Omega \neq \emptyset$, (E, \mathcal{E}) be a measurable space, maps $g : \Omega \to E$ and $F : \Omega \to \mathbb{R}$, and $\sigma(g) = \{g^{-1}(B) : B \in \mathcal{E}\}$. Then the following assertions are equivalent:

(1) The map F is $(\Omega, \sigma(g)) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ is measurable.

(2) There exists a measurable $h: (E, \mathcal{E}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that $F = h \circ g$.

For the proof see [1, p. 62].

Theorem A.2 (Monotone Class Theorem for functions). Let $\mathcal{A} \subseteq 2^{\Omega}$ be a π -system that contains Ω and assume $\mathcal{H} \subseteq \{f; f : \Omega \to \mathbb{R}\}$ such that

(1) $\mathbb{1}_A \in \mathcal{H} \text{ for } A \in \mathcal{A},$

(2) \mathcal{H} is a linear space,

(3) If $(f_n)_{n=1}^{\infty} \subseteq \mathcal{H}$ such that $0 \leq f_n \uparrow f$ and f is bounded, then $f \in \mathcal{H}$. Then \mathcal{H} contains all bounded functions that are $\sigma(\mathcal{A})$ measurable. For the proof see [4].

Theorem A.3. Suppose a stochastic basis $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F})_{t\geq 0})$ satisfying the usual assumptions and continuous, local martingales $(M_t^1)_{t\geq 0}, \ldots, (M_t^d)_{t\geq 0}$. If for $1 \leq i, j \leq d$ and all $\omega \in \Omega$ the processes $\langle M^i, M^j \rangle_t(\omega)$ are absolutely continuous in t, then there exists an extension $(\tilde{\Omega}, \tilde{\mathcal{F}}, \mathbb{P}, (\tilde{\mathcal{F}})_{t\geq 0}))$ of $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F})_{t\geq 0})$ satisfying the usual conditions and an d-dimensional $(\tilde{\mathcal{F}})_{t\geq 0}$ -Brownian motion $(B_t)_{t\geq 0}$ and progressively measurable processes $(X_t^{i,j})_{t\geq 0}$ i, j = 1, ..., d with

$$\tilde{\mathbb{P}}\left(\int_0^t (X_s^{i,j})^2 ds < \infty\right) = 1, \quad 1 \le i, j \le d; 0 \le t < \infty,$$

such that \mathbb{P} -a.s.

$$\begin{split} M^i_t &= \sum_{j=1}^d \int_0^t X^{i,j}_s dB^j_s, \quad 1 \le i \le d; 0 \le t < \infty, \\ \langle M^i, M^j \rangle_t &= \sum_{k=1}^d \int_0^t X^{i,k}_s X^{k,j}_s ds \quad 1 \le i,j \le d; 0 \le t < \infty. \end{split}$$

For the proof see [5, Theorem 3.4.2].

A continuous adapted process is an Itô process provided that

$$X(t) = x + \int_0^t \mu(s)ds + \int_0^t \sigma(s)dB(s), \quad t \ge 0,$$

where μ and σ are progressively measurable and satisfy

$$\int_0^t \mu(s) ds < \infty, \quad \int_0^t \sigma(s)^2 ds < \infty \ a.s. \quad \text{for all} \quad t \ge 0$$

Theorem A.4 (Itô's formula). If $B(t) = (B_1(t), ..., B_d(t))$ is a d-dimensional (\mathcal{F}_t) Brownian motion and

$$X_{i}(t) = x_{i} + \int_{0}^{t} \mu_{i}(s)ds + \sum_{j=1}^{d} \int_{0}^{t} \sigma_{ij}(s)dB_{j}(s),$$

are Itô processes, then for any C^2 function $f : \mathbb{R}^d \to \mathbb{R}$ we have

$$f(X_1(t), ..X_d(t)) = f(x_1, .., x_d) + \sum_{i=1}^d \int_0^t \frac{\partial}{\partial x_i} f(X_1(s), ..X_d(s)) dX_i(s)$$

+
$$\frac{1}{2} \sum_{i=1}^d \sum_{j=1}^d \int_0^t \frac{\partial^2}{\partial x_i \partial x_j} f(X_1(s), ..X_d(s)) d\langle X_i, X_j \rangle_s,$$

and $d\langle X_i, X_j \rangle_s = \sum_{k=1}^d \sigma_{ik} \sigma_{jk} ds.$

References

- [1] H. Bauer, Measure and integration theory, Walter de Gruyter, 2001.
- [2] E. Cinlar, *Probability and Statistics*, Springer, 2011.
- [3] G. Folland, Real Analysis, 1999.
- [4] S. He, J. Wang, J. Yan, Semimartingale Theory and Stochastic Calculus, Taylor & Francis, 1992.
- [5] I. Karatzas, S. Shreve, Brownian Motion and Stochastic Calculus, Springer, 1991.
- [6] https://almostsure.wordpress.com/2010/08/16/ failure-of-the-martingale-property/#more-816